Large Language Model Archives - gettectonic.com
Agentic AI is Here

On Premise Gen AI

In 2025, enterprises transitioning generative AI (GenAI) into production after years of experimentation are increasingly considering on-premises deployment as a cost-effective alternative to the cloud. Since OpenAI ignited the AI revolution in late 2022, organizations have tested large language models powering GenAI services on platforms like AWS, Microsoft Azure, and Google Cloud. These experiments demonstrated GenAI’s potential to enhance business operations while exposing the substantial costs of cloud usage. To avoid difficult conversations with CFOs about escalating cloud expenses, CIOs are exploring on-premises AI as a financially viable solution. Advances in software from startups and packaged infrastructure from vendors such as HPE and Dell are making private data centers an attractive option for managing costs. A survey conducted by Menlo Ventures in late 2024 found that 47% of U.S. enterprises with at least 50 employees were developing GenAI solutions in-house. Similarly, Informa TechTarget’s Enterprise Strategy Group reported a rise in enterprises considering on-premises and public cloud equally for new applications—from 37% in 2024 to 45% in 2025. This shift is reflected in hardware sales. HPE reported a 16% revenue increase in AI systems, reaching $1.5 billion in Q4 2024. During the same period, Dell recorded a record $3.6 billion in AI server orders, with its sales pipeline expanding by over 50% across various customer segments. “Customers are seeking diverse AI-capable server solutions,” noted David Schmidt, senior director of Dell’s PowerEdge server line. While heavily regulated industries have traditionally relied on on-premises systems to ensure data privacy and security, broader adoption is now driven by the need for cost control. Fortune 2000 companies are leading this trend, opting for private infrastructure over the cloud due to more predictable expenses. “It’s not unusual to see cloud bills exceeding 0,000 or even million per month,” said John Annand, an analyst at Info-Tech Research Group. Global manufacturing giant Jabil primarily uses AWS for GenAI development but emphasizes ongoing cost management. “Does moving to the cloud provide a cost advantage? Sometimes it doesn’t,” said CIO May Yap. Jabil employs a continuous cloud financial optimization process to maximize efficiency. On-Premises AI: Technology and Trends Enterprises now have alternatives to cloud infrastructure, including as-a-service solutions like Dell APEX and HPE GreenLake, which offer flexible pay-per-use pricing for AI servers, storage, and networking tailored for private data centers or colocation facilities. “The high cost of cloud drives organizations to seek more predictable expenses,” said Tiffany Osias, vice president of global colocation services at Equinix. Walmart exemplifies in-house AI development, creating tools like a document summarization app for its benefits help desk and an AI assistant for corporate employees. Startups are also enabling enterprises to build AI applications with turnkey solutions. “About 80% of GenAI requirements can now be addressed with push-button solutions from startups,” said Tim Tully, partner at Menlo Ventures. Companies like Ragie (RAG-as-a-service) and Lamatic.ai (GenAI platform-as-a-service) are driving this innovation. Others, like Squid AI, integrate custom AI agents with existing enterprise infrastructure. Open-source frameworks like LangChain further empower on-premises development, offering tools for creating chatbots, virtual assistants, and intelligent search systems. Its extension, LangGraph, adds functionality for building multi-agent workflows. As enterprises develop AI applications internally, consulting services will play a pivotal role. “Companies offering guidance on effective AI tool usage and aligning them with business outcomes will thrive,” Annand said. This evolution in AI deployment highlights the growing importance of balancing technological innovation with financial sustainability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Statement Accuracy Prediction based on Language Model Activations

Statement Accuracy Prediction based on Language Model Activations

When users first began interacting with ChatGPT, they noticed an intriguing behavior: the model would often reverse its stance when told it was wrong. This raised concerns about the reliability of its outputs. How can users trust a system that appears to contradict itself? Recent research has revealed that large language models (LLMs) not only generate inaccurate information (often referred to as “hallucinations”) but are also aware of their inaccuracies. Despite this awareness, these models proceed to present their responses confidently. Unveiling LLM Awareness of Hallucinations Researchers discovered this phenomenon by analyzing the internal mechanisms of LLMs. Whenever an LLM generates a response, it transforms the input query into a numerical representation and performs a series of computations before producing the output. At intermediate stages, these numerical representations are called “activations.” These activations contain significantly more information than what is reflected in the final output. By scrutinizing these activations, researchers can identify whether the LLM “knows” its response is inaccurate. A technique called SAPLMA (Statement Accuracy Prediction based on Language Model Activations) has been developed to explore this capability. SAPLMA examines the internal activations of LLMs to predict whether their outputs are truthful or not. Why Do Hallucinations Occur? LLMs function as next-word prediction models. Each word is selected based on its likelihood given the preceding words. For example, starting with “I ate,” the model might predict the next words as follows: The issue arises when earlier predictions constrain subsequent outputs. Once the model commits to a word, it cannot go back to revise its earlier choice. For instance: In another case: This mechanism reveals how the constraints of next-word prediction can lead to hallucinations, even when the model “knows” it is generating an incorrect response. Detecting Inaccuracies with SAPLMA To investigate whether an LLM recognizes its own inaccuracies, researchers developed the SAPLMA method. Here’s how it works: The classifier itself is a simple neural network with three dense layers, culminating in a binary output that predicts the truthfulness of the statement. Results and Insights The SAPLMA method achieved an accuracy of 60–80%, depending on the topic. While this is a promising result, it is not perfect and has notable limitations. For example: However, if LLMs can learn to detect inaccuracies during the generation process, they could potentially refine their outputs in real time, reducing hallucinations and improving reliability. The Future of Error Mitigation in LLMs The SAPLMA method represents a step forward in understanding and mitigating LLM errors. Accurate classification of inaccuracies could pave the way for models that can self-correct and produce more reliable outputs. While the current limitations are significant, ongoing research into these methods could lead to substantial improvements in LLM performance. By combining techniques like SAPLMA with advancements in LLM architecture, researchers aim to build models that are not only aware of their errors but capable of addressing them dynamically, enhancing both the accuracy and trustworthiness of AI systems. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Salesforce and AWS-Agentic Enterprise

Salesforce and AWS: Driving the Future of the Agentic Enterprise As AI-powered agents redefine the way businesses operate, strategic partnerships are playing a pivotal role in harnessing the power of data and artificial intelligence. Salesforce and AWS, two industry leaders, have taken significant steps toward building a smarter, agentic enterprise through their expanded collaboration. One year into this strategic partnership, their joint efforts are delivering transformative AI and data solutions, helping customers like Buyers Edge Platform unlock new efficiencies and capabilities. A Partnership Fueling Agentic AI Salesforce and AWS are aligning their AI and data initiatives to pave the way for advanced agentic systems—autonomous AI agents designed to enhance business operations and customer experiences. Among their notable achievements over the past year are: These innovations are creating an ecosystem that supports the delivery of agentic AI, enabling businesses to streamline operations and tap into new value from their data. “By integrating data and AI capabilities across our platforms, Salesforce and AWS are building a strong foundation for the future of agentic systems,” said Brian Landsman, EVP of Global Business Development and Technology Partnerships at Salesforce. “With a majority of large companies planning to implement agents by 2027, organizations need trusted partners to help them achieve their vision of a smarter enterprise.” Making AI More Accessible Salesforce is simplifying access to AI technology through the AWS Marketplace, offering customers an integrated solution that includes Agentforce—the agentic layer of the Salesforce platform. Agentforce enables businesses to deploy autonomous AI agents across various operations, streamlining workflows and delivering measurable results. Available in 23 countries, Salesforce’s presence on AWS Marketplace offers customers key advantages, including: By removing barriers to adoption, Salesforce and AWS empower companies to focus on leveraging technology for growth rather than navigating complex procurement systems. A New Era of Enterprise Efficiency As businesses increasingly rely on data and AI to remain competitive, the Salesforce-AWS partnership is setting the stage for enterprises to achieve more with agentic systems. These systems allow companies to execute complex tasks with unprecedented efficiency, maximizing ROI on technology investments. “Our partnership with Salesforce empowers mutual customers to realize the full potential of their data and AI investments,” said Chris Grusz, Managing Director of Technology Partnerships at AWS. “Together, we’re delivering immediate, actionable insights with agentic AI, enabling organizations to automate strategically and unlock more value across their operations.” Looking Ahead By seamlessly integrating data and AI capabilities, Salesforce and AWS are not just building technology solutions—they’re reshaping how enterprises operate and thrive in the digital age. As agentic AI becomes an essential part of business strategy, this partnership provides a blueprint for leveraging technology to drive smarter, more agile, and more effective enterprises. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Autonomy, Architecture, and Action

Redefining AI Agents: Autonomy, Architecture, and Action AI agents are reshaping how technology interacts with us and executes tasks. Their mission? To reason, plan, and act independently—following instructions, making autonomous decisions, and completing actions, often without user involvement. These agents adapt to new information, adjust in real time, and pursue their objectives autonomously. This evolution in agentic AI is revolutionizing how goals are accomplished, ushering in a future of semi-autonomous technology. At their foundation, AI agents rely on one or more large language models (LLMs). However, designing agents is far more intricate than building chatbots or generative assistants. While traditional AI applications often depend on user-driven inputs—such as prompt engineering or active supervision—agents operate autonomously. Core Principles of Agentic AI Architectures To enable autonomous functionality, agentic AI systems must incorporate: Essential Infrastructure for AI Agents Building and deploying agentic AI systems requires robust software infrastructure that supports: Agent Development Made Easier with Langflow and Astra DB Langflow simplifies the development of agentic applications with its visual IDE. It integrates with Astra DB, which combines vector and graph capabilities for ultra-low latency data access. This synergy accelerates development by enabling: Transforming Autonomy into Action Agentic AI is fundamentally changing how tasks are executed by empowering systems to act autonomously. By leveraging platforms like Astra DB and Langflow, organizations can simplify agent design and deploy scalable, effective AI applications. Start building the next generation of AI-powered autonomy today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Scope of Generative AI

Exploring Generative AI

Like most employees at most companies, I wear a few different hats around Tectonic. Whether I’m building a data model, creating and scheduing an email campaign, standing up a platform generative AI is always at my fingertips. At my very core, I’m a marketer. Have been for so long I do it without eveven thinking. Or at least, everyuthing I do has a hat tip to its future marketing needs. Today I want to share some of the AI content generators I’ve been using, am looking to use, or just heard about. But before we rip into the insight, here’s a primer. Types of AI Content Generators ChatGPT, a powerful AI chatbot, drew significant attention upon its November 2022 release. While the GPT-3 language model behind it had existed for some time, ChatGPT made this technology accessible to nontechnical users, showcasing how AI can generate content. Over two years later, numerous AI content generators have emerged to cater to diverse use cases. This rapid development raises questions about the technology’s impact on work. Schools are grappling with fears of plagiarism, while others are embracing AI. Legal debates about copyright and digital media authenticity continue. President Joe Biden’s October 2023 executive order addressed AI’s risks and opportunities in areas like education, workforce, and consumer privacy, underscoring generative AI’s transformative potential. What is AI-Generated Content? AI-generated content, also known as generative AI, refers to algorithms that automatically create new content across digital media. These algorithms are trained on extensive datasets and require minimal user input to produce novel outputs. For instance, ChatGPT sets a standard for AI-generated content. Based on GPT-4o, it processes text, images, and audio, offering natural language and multimodal capabilities. Many other generative AI tools operate similarly, leveraging large language models (LLMs) and multimodal frameworks to create diverse outputs. What are the Different Types of AI-Generated Content? AI-generated content spans multiple media types: Despite their varied outputs, most generative AI systems are built on advanced LLMs like GPT-4 and Google Gemini. These multimodal models process and generate content across multiple formats, with enhanced capabilities evolving over time. How Generative AI is Used Generative AI applications span industries: These tools often combine outputs from various media for complex, multifaceted projects. AI Content Generators AI content generators exist across various media. Below are good examples organized by gen ai type: Written Content Generators Image Content Generators Music Content Generators Code Content Generators Other AI Content Generators These tools showcase how AI-powered content generation is revolutionizing industries, making content creation faster and more accessible. I do hope you will comment below on your favorites, other AI tools not showcased above, or anything else AI-related that is on your mind. Written by Tectonic’s Marketing Operations Director, Shannan Hearne. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
From Chatbots to Agentic AI

From Chatbots to Agentic AI

The transition from LLM-powered chatbots to agentic systems, or agentic AI, can be summed up by the old saying: “Less talk, more action.” Keeping up with advancements in AI can be overwhelming, especially when managing an existing business. The speed and complexity of innovation can make it feel like the first day of school all over again. This insight offers a comprehensive look at AI agents, their components, and key characteristics. The introductory section breaks down the elements that form the term “AI agent,” providing a clear definition. After establishing this foundation, we explore the evolution of LLM applications, particularly the shift from traditional chatbots to agentic systems. The goal is to understand why AI agents are becoming increasingly vital in AI development and how they differ from LLM-powered chatbots. By the end of this guide, you will have a deeper understanding of AI agents, their potential applications, and their impact on organizational workflows. For those of you with a technical background who prefer to get hands-on, click here for the best repository for AI developers and builders. What is an AI Agent? Components of AI Agents To understand the term “AI agent,” we need to examine its two main components. First, let’s consider artificial intelligence, or AI. Artificial Intelligence (AI) refers to non-biological intelligence that mimics human cognition to perform tasks traditionally requiring human intellect. Through machine learning and deep learning techniques, algorithms—especially neural networks—learn patterns from data. AI systems are used for tasks such as detection, classification, and prediction, with content generation becoming a prominent domain due to transformer-based models. These systems can match or exceed human performance in specific scenarios. The second component is “agent,” a term commonly used in both technology and human contexts. In computer science, an agent refers to a software entity with environmental awareness, able to perceive and act within its surroundings. A computational agent typically has the ability to: In human contexts, an agent is someone who acts on behalf of another person or organization, making decisions, gathering information, and facilitating interactions. They often play intermediary roles in transactions and decision-making. To define an AI agent, we combine these two perspectives: it is a computational entity with environmental awareness, capable of perceiving inputs, acting with tools, and processing information using foundation models backed by both long-term and short-term memory. Key Components and Characteristics of AI Agents From LLMs to AI Agents Now, let’s take a step back and understand how we arrived at the concept of AI agents, particularly by looking at how LLM applications have evolved. The shift from traditional chatbots to LLM-powered applications has been rapid and transformative. Form Factor Evolution of LLM Applications Traditional Chatbots to LLM-Powered Chatbots Traditional chatbots, which existed before generative AI, were simpler and relied on heuristic responses: “If this, then that.” They followed predefined rules and decision trees to generate responses. These systems had limited interactivity, with the fallback option of “Speak to a human” for complex scenarios. LLM-Powered Chatbots The release of OpenAI’s ChatGPT on November 30, 2022, marked the introduction of LLM-powered chatbots, fundamentally changing the game. These chatbots, like ChatGPT, were built on GPT-3.5, a large language model trained on massive datasets. Unlike traditional chatbots, LLM-powered systems can generate human-like responses, offering a much more flexible and intelligent interaction. However, challenges remained. LLM-powered chatbots struggled with personalization and consistency, often generating plausible but incorrect information—a phenomenon known as “hallucination.” This led to efforts in grounding LLM responses through techniques like retrieval-augmented generation (RAG). RAG Chatbots RAG is a method that combines data retrieval with LLM generation, allowing systems to access real-time or proprietary data, improving accuracy and relevance. This hybrid approach addresses the hallucination problem, ensuring more reliable outputs. LLM-Powered Chatbots to AI Agents As LLMs expanded, their abilities grew more sophisticated, incorporating advanced reasoning, multi-step planning, and the use of external tools (function calling). Tool use refers to an LLM’s ability to invoke specific functions, enabling it to perform more complex tasks. Tool-Augmented LLMs and AI Agents As LLMs became tool-augmented, the emergence of AI agents followed. These agents integrate reasoning, planning, and tool use into an autonomous, goal-driven system that can operate iteratively within a dynamic environment. Unlike traditional chatbot interfaces, AI agents leverage a broader set of tools to interact with various systems and accomplish tasks. Agentic Systems Agentic systems—computational architectures that include AI agents—embody these advanced capabilities. They can autonomously interact with systems, make decisions, and adapt to feedback, forming the foundation for more complex AI applications. Components of an AI Agent AI agents consist of several key components: Characteristics of AI Agents AI agents are defined by the following traits: Conclusion AI agents represent a significant leap from traditional chatbots, offering greater autonomy, complexity, and interactivity. However, the term “AI agent” remains fluid, with no universal industry standard. Instead, it exists on a continuum, with varying degrees of autonomy, adaptability, and proactive behavior defining agentic systems. Value and Impact of AI Agents The key benefits of AI agents lie in their ability to automate manual processes, reduce decision-making burdens, and enhance workflows in enterprise environments. By “agentifying” repetitive tasks, AI agents offer substantial productivity gains and the potential to transform how businesses operate. As AI agents evolve, their applications will only expand, driving new efficiencies and enabling organizations to leverage AI in increasingly sophisticated ways. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Agentic AI is Here

Agentic AI Revolution

The Agentic AI Revolution: Lead, Follow, or Get Out of the Way The era of agentic AI is here, and the message is clear—if you’re not leading the charge, you’re falling behind. Companies like Wiley and OpenTable are reshaping their industries with autonomous AI agents that don’t just assist but also analyze, strategize, and execute tasks with unparalleled efficiency. As these organizations demonstrate, the key to AI success lies in rewriting the rules of your industry rather than playing catch-up. Rewriting Industry Standards with Agentic AI Wiley: The education giant leveraged Agentforce, a digital labor platform for deploying autonomous AI agents, to transform its customer service operations. By onboarding representatives 50% faster and improving case resolution by 40%, Wiley streamlined its processes in just a few weeks. AI agents now handle registration and payment inquiries, directing students to resources and reducing the workload on human representatives. OpenTable: As the go-to reservation platform for 1.7 billion diners annually, OpenTable deploys AI agents to manage reservation changes and loyalty points. This allows employees to focus on customer relationships. Even a two-minute efficiency gain per interaction translates to massive operational savings. Salesforce Help Site: With over 60 million annual visits, the Salesforce Help site integrated Agentforce to resolve 83% of queries without human involvement. In just weeks, Agentforce doubled its capacity, handling over 32,000 automated conversations. These examples showcase a new era of digital labor where AI agents orchestrate high-value, multistep tasks, working tirelessly to deliver results. Far from replacing humans, they supercharge productivity and innovation, enabling companies to do more than ever before. How to Empower Your Workforce with AI Empowering your workforce for the next wave of AI doesn’t require months of preparation or millions of dollars. You don’t need to build or train your own large language model (LLM). Instead, integrating AI with existing data, automation, and workflows is the key to success, as demonstrated by leaders like Wiley and OpenTable. Here’s how to get started: 1. Real-Time Data Access AI thrives on real-time, high-quality data. Platforms like Salesforce Data Cloud unify structured and unstructured data, connecting it seamlessly to the LLM. Techniques such as retrieval-augmented generation (RAG) and semantic search ensure AI agents can access the most relevant data for any task. 2. Advanced Reasoning AI agents aren’t just about answering queries—they execute complex, multistep tasks. For example, they can process returns, reorder items, and even flag anomalies. Powered by reasoning engines, these agents draw data from systems like CRM, refine plans, and adapt dynamically until the task is completed correctly. 3. Built-In Security AI agents must operate within clear guardrails, knowing their limits and handing tasks off to humans when necessary. Strong permissions and security protocols are essential to ensure data protection and prevent unauthorized actions. 4. Action-Oriented Workflows Generative AI’s real value lies in action. By integrating tools like Salesforce Flow for task automation and MuleSoft APIs for system connectivity, AI agents can execute business workflows such as fraud detection, customer outreach, and case management. 5. Human-AI Collaboration The future of work isn’t AI replacing humans—it’s AI and humans working together. While agents handle data-intensive and repetitive tasks, humans bring strategic thinking, empathy, and creativity. This synergy leads to smarter decisions and redefines workflows across industries. Why Training Your Own LLM May Not Be the Answer Many companies assume training a proprietary LLM will give them a competitive edge. In reality, this process is costly, time-intensive, and requires constant updates to remain accurate. An LLM trained on static data quickly becomes outdated, much like a GPS that fails after the first detour. Instead, companies are turning to out-of-the-box AI solutions that integrate seamlessly with their existing systems. These tools offer the flexibility to scale quickly and adapt in real time, enabling businesses to stay competitive without the heavy lift of building from scratch. Scaling AI for the Future Many organizations remain stuck in pilot phases with AI due to data quality issues and a limited understanding of use cases. Companies like Wiley and OpenTable, however, have cracked the code: integrating prebuilt AI systems with robust data flows, automation, and workflows. By embracing agentic AI, forward-thinking organizations are creating digital labor forces that unlock new efficiencies, enhance customer experiences, and position themselves for long-term success. The trillion-dollar AI opportunity awaits—will you lead or trail behind? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Why Build a General-Purpose Agent?

A general-purpose LLM agent serves as an excellent starting point for prototyping use cases and establishing the foundation for a custom agentic architecture tailored to your needs. What is an LLM Agent? An LLM (Large Language Model) agent is a program where execution logic is governed by the underlying model. Unlike approaches such as few-shot prompting or fixed workflows, LLM agents adapt dynamically. They can determine which tools to use (e.g., web search or code execution), how to use them, and iterate based on results. This adaptability enables handling diverse tasks with minimal configuration. Agentic Architectures Explained:Agentic systems range from the reliability of fixed workflows to the flexibility of autonomous agents. For instance: Your architecture choice will depend on the desired balance between reliability and flexibility for your use case. Building a General-Purpose LLM Agent Step 1: Select the Right LLM Choosing the right model is critical for performance. Evaluate based on: Model Recommendations (as of now): For simpler use cases, smaller models running locally can also be effective, but with limited functionality. Step 2: Define the Agent’s Control Logic The system prompt differentiates an LLM agent from a standalone model. This prompt contains rules, instructions, and structures that guide the agent’s behavior. Common Agentic Patterns: Starting with ReAct or Plan-then-Execute patterns is recommended for general-purpose agents. Step 3: Define the Agent’s Core Instructions To optimize the agent’s behavior, clearly define its features and constraints in the system prompt: Example Instructions: Step 4: Define and Optimize Core Tools Tools expand an agent’s capabilities. Common tools include: For each tool, define: Example: Implementing an Arxiv API tool for scientific queries. Step 5: Memory Handling Strategy Since LLMs have limited memory (context window), a strategy is necessary to manage past interactions. Common approaches include: For personalization, long-term memory can store user preferences or critical information. Step 6: Parse the Agent’s Output To make raw LLM outputs actionable, implement a parser to convert outputs into a structured format like JSON. Structured outputs simplify execution and ensure consistency. Step 7: Orchestrate the Agent’s Workflow Define orchestration logic to handle the agent’s next steps after receiving an output: Example Orchestration Code: pythonCopy codedef orchestrator(llm_agent, llm_output, tools, user_query): while True: action = llm_output.get(“action”) if action == “tool_call”: tool_name = llm_output.get(“tool_name”) tool_params = llm_output.get(“tool_params”, {}) if tool_name in tools: try: tool_result = tools[tool_name](**tool_params) llm_output = llm_agent({“tool_output”: tool_result}) except Exception as e: return f”Error executing tool ‘{tool_name}’: {str(e)}” else: return f”Error: Tool ‘{tool_name}’ not found.” elif action == “return_answer”: return llm_output.get(“answer”, “No answer provided.”) else: return “Error: Unrecognized action type from LLM output.” This orchestration ensures seamless interaction between tools, memory, and user queries. When to Consider Multi-Agent Systems A single-agent setup works well for prototyping but may hit limits with complex workflows or extensive toolsets. Multi-agent architectures can: Starting with a single agent helps refine workflows, identify bottlenecks, and scale effectively. By following these steps, you’ll have a versatile system capable of handling diverse use cases, from competitive analysis to automating workflows. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Python-Based Reasoning Engine

Python-Based Reasoning Engine

Introducing a Python-Based Reasoning Engine for Deterministic AI In the age of large language models (LLMs), there’s a growing need for deterministic systems that enforce rules and constraints while reasoning about information. We’ve developed a Python-based reasoning and validation framework that bridges the gap between traditional rule-based logic and modern AI capabilities, inspired by frameworks like Pydantic. This approach is designed for developers and non-technical experts alike, making it easy to build complex rule engines that translate natural language instructions into enforceable code. Our fine-tuned model automates the creation of rules while ensuring human oversight for quality and conflict detection. The result? Faster implementation of rule engines, reduced developer overhead, and flexible extensibility across domains. The Framework at a Glance Our system consists of five core components: To analogize, this framework operates like a game of chess: Our framework supports two primary use cases: Key Features and Benefits Case Studies Validation Engine: Ensuring Compliance A mining company needed to validate employee qualifications based on age, region, and role. Example Data Structure: jsonCopy code{ “employees”: [ { “name”: “Sarah”, “age”: 25, “role”: “Manager”, “documents”: [“safe_handling_at_work”, “heavy_lifting”] }, { “name”: “John”, “age”: 17, “role”: “Laborer”, “documents”: [“heavy_lifting”] } ] } Rules: jsonCopy code{ “rules”: [ { “type”: “min_age”, “parameters”: { “min_age”: 18 } }, { “type”: “dozer_operator”, “parameters”: { “document_type”: “dozer_qualification” } } ] } Outcome:The system flagged violations, such as employees under 18 or missing required qualifications, ensuring compliance with organizational rules. Reasoning Engine: Solving the River Crossing Puzzle The classic river crossing puzzle demonstrates the engine’s reasoning capabilities. Problem Setup:A farmer must ferry a goat, a wolf, and a cabbage across a river, adhering to specific constraints (e.g., the goat cannot be left alone with the cabbage). Steps: Output:The engine generated a solution in 0.0003 seconds, showcasing its efficiency in navigating complex logic. Advanced Features: Dynamic Rule Expansion The system supports real-time rule adjustments. For instance, adding a “wolf cannot be left with a chicken” constraint introduces a conflict. By extending rules (e.g., allowing the farmer to carry two items), the engine dynamically resolves previously unsolvable scenarios. Sample Code Snippet: pythonCopy codeclass CarryingCapacityRule(Rule): def evaluate(self, state): items_moved = sum(1 for item in [‘wolf’, ‘goat’, ‘cabbage’, ‘chicken’] if getattr(state, item) == state.farmer) return items_moved <= 2 def get_description(self): return “Farmer can carry up to two items at a time” Result:The adjusted engine solved the puzzle in three moves, down from seven, while maintaining rule integrity. Collaborative UI for Rule Creation Our user interface empowers domain experts to define rules without writing code. Developers validate these rules, which are then seamlessly integrated into the system. Visual Workflow: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Standards in Healthcare Cybersecurity

Deploying Large Language Models in Healthcare

Study Identifies Cost-Effective Strategies for Deploying Large Language Models in Healthcare Efficient deployment of large language models (LLMs) at scale in healthcare can streamline clinical workflows and reduce costs by up to 17 times without compromising reliability, according to a study published in NPJ Digital Medicine by researchers at the Icahn School of Medicine at Mount Sinai. The research highlights the potential of LLMs to enhance clinical operations while addressing the financial and computational hurdles healthcare organizations face in scaling these technologies. To investigate solutions, the team evaluated 10 LLMs of varying sizes and capacities using real-world patient data. The models were tested on chained queries and increasingly complex clinical notes, with outputs assessed for accuracy, formatting quality, and adherence to clinical instructions. “Our study was driven by the need to identify practical ways to cut costs while maintaining performance, enabling health systems to confidently adopt LLMs at scale,” said Dr. Eyal Klang, director of the Generative AI Research Program at Icahn Mount Sinai. “We aimed to stress-test these models, evaluating their ability to manage multiple tasks simultaneously and identifying strategies to balance performance and affordability.” The team conducted over 300,000 experiments, finding that high-capacity models like Meta’s Llama-3-70B and GPT-4 Turbo 128k performed best, maintaining high accuracy and low failure rates. However, performance began to degrade as task volume and complexity increased, particularly beyond 50 tasks involving large prompts. The study further revealed that grouping tasks—such as identifying patients for preventive screenings, analyzing medication safety, and matching patients for clinical trials—enabled LLMs to handle up to 50 simultaneous tasks without significant accuracy loss. This strategy also led to dramatic cost savings, with API costs reduced by up to 17-fold, offering a pathway for health systems to save millions annually. “Understanding where these models reach their cognitive limits is critical for ensuring reliability and operational stability,” said Dr. Girish N. Nadkarni, co-senior author and director of The Charles Bronfman Institute of Personalized Medicine. “Our findings pave the way for the integration of generative AI in hospitals while accounting for real-world constraints.” Beyond cost efficiency, the study underscores the potential of LLMs to automate key tasks, conserve resources, and free up healthcare providers to focus more on patient care. “This research highlights how AI can transform healthcare operations. Grouping tasks not only cuts costs but also optimizes resources that can be redirected toward improving patient outcomes,” said Dr. David L. Reich, co-author and chief clinical officer of the Mount Sinai Health System. The research team plans to explore how LLMs perform in live clinical environments and assess emerging models to determine whether advancements in AI technology can expand their cognitive thresholds. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
AI Agents Set to Break Through in 2025

AI Agents Set to Break Through in 2025

2025: The Year AI Agents Transform Work and Life Despite years of hype around artificial intelligence, its true disruptive impact has so far been limited. However, industry experts believe that’s about to change in 2025 as autonomous AI agents prepare to enter and reshape nearly every facet of our lives. Since OpenAI’s ChatGPT took the world by storm in late 2022, billions of dollars have been funneled into the AI sector. Big tech and startups alike are racing to harness the transformative potential of the technology. Yet, while millions now interact with AI chatbots daily, turning them into tools that deliver tangible business value has proven challenging. A recent study by Boston Consulting Group revealed that only 26% of companies experimenting with AI have progressed beyond proof of concept to derive measurable value. This lag reflects the limitations of current AI tools, which serve primarily as copilots—capable of assisting but requiring constant oversight and remaining prone to errors. AI Agents Set to Break Through in 2025 The status quo, however, is poised for a radical shift. Autonomous AI agents—capable of independently analyzing information, making decisions, and taking action—are expected to emerge as the industry’s next big breakthrough. “For the first time, technology isn’t just offering tools for humans to do work,” Salesforce CEO Marc Benioff wrote in Time. “It’s providing intelligent, scalable digital labor that performs tasks autonomously. Instead of waiting for human input, agents can analyze information, make decisions, and adapt as they go.” At their core, AI agents leverage the same large language models (LLMs) that power tools like ChatGPT. But these agents take it further, acting as reasoning engines that develop step-by-step strategies to execute tasks. Armed with access to external data sources like customer records or financial databases and equipped with software tools, agents can achieve goals independently. While current LLMs still face reasoning limitations, advancements are on the horizon. New models like OpenAI’s “o1” and DeepSeek’s “R1” are specialized for reasoning, sparking hope that 2025 will see agents grow far more capable. Big Tech and Startups Betting Big Major players are already gearing up for this new era. Startups are also eager to carve out their share of the market. According to Pitchbook, funding deals for agent-focused ventures surged by over 80% in 2024, with the median deal value increasing nearly 50%. Challenges to Overcome Despite the enthusiasm, significant hurdles remain. 2025: A Turning Point Despite these challenges, many experts believe 2025 will mark the mainstream adoption of AI agents. A New World of Work No matter the pace, it’s clear that AI agents will dominate the industry’s focus in 2025. If the technology delivers on its promise, the workplace could undergo a profound transformation, enabling entirely new ways of working and automating tasks that once required human intervention. The question isn’t if agents will redefine the way we work—it’s how fast. By the end of 2025, the shift could be undeniable. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce prompt builder

Salesforce Prompt Builder

Salesforce Prompt Builder: Field Generation Prompt Template What is a Prompt? A prompt is a set of detailed instructions designed to guide a Large Language Model (LLM) in generating relevant and high-quality output. Just like chefs fine-tune their recipes through testing and adjustments, prompt design involves iterating on instructions to ensure that the LLM delivers accurate, actionable results. Effective prompt design involves “grounding” your prompts with specific data, such as business context, product details, and customer information. By tailoring prompts to your particular needs, you help the LLM provide responses that align with your business goals. Like a well-crafted recipe, an effective prompt consists of both ingredients and instructions that work together to produce optimal results. A great prompt offers clear directions to the LLM, ensuring it generates output that meets your expectations. But what does an ideal prompt template look like? Here’s a breakdown: What is a Field Generation Prompt Template? The Field Generation Prompt Template is a tool that integrates AI-powered workflows directly into fields within Lightning record pages. This template allows users to populate fields with summaries or descriptions generated by an LLM, streamlining interactions and enhancing productivity during customer conversations. Let’s explore how to set up a Field Generation Prompt Template by using an example: generating a summary of case comments to help customer service agents efficiently review a case. Steps to Create a Field Generation Prompt Template 1. Create a New Rich Text Field on the Case Object 2. Enable Einstein Setup 3. Create a Prompt Template with the Field Generation Template Type 4. Configure the Prompt Template Workspace Optional: You can also use Flow or Apex to incorporate additional merge fields. 5. Preview the LLM’s Response Example Prompt: Scenario:You are a customer service representative at a company called ENForce.com, and you need a quick summary of a case’s comments. Record Merge Fields: Instructions: vbnetCopy codeFollow these instructions precisely. Do not add information not provided. – Refer to the “contact” as “client” in the summary. – Use clear, concise, and straightforward language in the active voice with a friendly, informal, and informative tone. – Include an introductory sentence and closing sentence, along with several bullet points. – Use a variety of emojis as bullet points to make the list more engaging. – Limit the summary to no more than seven sentences. – Do not include any reference to missing values or incomplete data. 6. Add the “Case Summary” Field to the Lightning Record Page 7. Generate the Summary By following these steps, you can leverage Salesforce’s Prompt Builder to enhance case management processes and improve the efficiency of customer service interactions through AI-assisted summaries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents and Consumer Trust

AI Agents Next AI Evolution

AI agents are being hailed as the next big leap in artificial intelligence, but there’s no universally accepted definition of what they are—or what they should do. Even within the tech community, there’s debate about what constitutes an AI agent. At its core, an AI agent can be described as software powered by artificial intelligence that performs tasks once handled by human roles, such as customer service agents, HR representatives, or IT help desk staff. However, their potential spans much further. These agents don’t just answer questions—they take action, often working across multiple systems. For example, Perplexity recently launched an AI agent to assist with holiday shopping, while Google introduced Project Mariner, an agent that helps users book flights, find recipes, and shop for household items. While the idea seems straightforward, it’s muddied by inconsistent definitions. For Google, AI agents are task-based assistants tailored to specific roles, like coding help for developers or troubleshooting issues for IT professionals. In contrast, Asana views agents as digital co-workers that take on assigned tasks, and Sierra—a startup led by former Salesforce co-CEO Bret Taylor—envisions agents as sophisticated customer experience tools that surpass traditional chatbots by tackling complex problems. This lack of consensus adds to the uncertainty around what AI agents can truly achieve. Rudina Seseri, founder and managing partner at Glasswing Ventures, explains this ambiguity stems from the technology’s infancy. She describes AI agents as intelligent systems capable of perceiving their environment, reasoning, making decisions, and taking actions to achieve specific goals autonomously. These agents rely on a mix of AI technologies, including natural language processing, machine learning, and computer vision, to operate in dynamic environments. Optimists, like Box CEO Aaron Levie, believe AI agents will improve rapidly as advancements in GPU performance, model efficiency, and AI frameworks create a self-reinforcing cycle of innovation. However, skeptics like MIT robotics pioneer Rodney Brooks caution against overestimating progress, noting that solving real-world problems—especially those involving legacy systems with limited API access—can be far more challenging than anticipated. David Cushman of HFS Research likens current AI agents to assistants rather than fully autonomous entities, with their capabilities limited to helping users complete specific tasks within pre-defined boundaries. True autonomy, where AI agents handle contingencies and perform at scale without human oversight, remains a distant goal. Jon Turow, a partner at Madrona Ventures, emphasizes the need for dedicated infrastructure to support the development of AI agents. He envisions a tech stack that allows developers to focus on product differentiation while leaving scalability and reliability to the platform. This infrastructure would likely involve multiple specialized models working together under a routing layer, rather than relying on a single large language model (LLM). Fred Havemeyer of Macquarie US Equity Research agrees, noting that the most effective AI agents will combine various models to handle complex tasks. He imagines a future where agents act like autonomous supervisors, delegating tasks and reasoning through multi-step processes to achieve abstract goals. While this vision is compelling, the current state of AI agents suggests we’re still in a transitional phase. The progress so far is promising, but several breakthroughs are needed before agents can operate as envisioned—truly autonomous, multi-functional, and capable of seamless collaboration across diverse systems. This story, originally published on July 13, 2024, has been updated to reflect new developments from Perplexity and Google. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Empowering LLMs with a Robust Agent Framework

PydanticAI: Empowering LLMs with a Robust Agent Framework As the Generative AI landscape evolves at a historic pace, AI agents and multi-agent systems are expected to dominate 2025. Industry leaders like AWS, OpenAI, and Microsoft are racing to release frameworks, but among these, PydanticAI stands out for its unique integration of the powerful Pydantic library with large language models (LLMs). Why Pydantic Matters Pydantic, a Python library, simplifies data validation and parsing, making it indispensable for handling external inputs such as JSON, user data, or API responses. By automating data checks (e.g., type validation and format enforcement), Pydantic ensures data integrity while reducing errors and development effort. For instance, instead of manually validating fields like age or email, Pydantic allows you to define models that automatically enforce structure and constraints. Consider the following example: pythonCopy codefrom pydantic import BaseModel, EmailStr class User(BaseModel): name: str age: int email: EmailStr user_data = {“name”: “Alice”, “age”: 25, “email”: “[email protected]”} user = User(**user_data) print(user.name) # Alice print(user.age) # 25 print(user.email) # [email protected] If invalid data is provided (e.g., age as a string), Pydantic throws a detailed error, making debugging straightforward. What Makes PydanticAI Special Building on Pydantic’s strengths, PydanticAI brings structured, type-safe responses to LLM-based AI agents. Here are its standout features: Building an AI Agent with PydanticAI Below is an example of creating a PydanticAI-powered bank support agent. The agent interacts with customer data, evaluates risks, and provides structured advice. Installation bashCopy codepip install ‘pydantic-ai-slim[openai,vertexai,logfire]’ Example: Bank Support Agent pythonCopy codefrom dataclasses import dataclass from pydantic import BaseModel, Field from pydantic_ai import Agent, RunContext from bank_database import DatabaseConn @dataclass class SupportDependencies: customer_id: int db: DatabaseConn class SupportResult(BaseModel): support_advice: str = Field(description=”Advice for the customer”) block_card: bool = Field(description=”Whether to block the customer’s card”) risk: int = Field(description=”Risk level of the query”, ge=0, le=10) support_agent = Agent( ‘openai:gpt-4o’, deps_type=SupportDependencies, result_type=SupportResult, system_prompt=( “You are a support agent in our bank. Provide support to customers and assess risk levels.” ), ) @support_agent.system_prompt async def add_customer_name(ctx: RunContext[SupportDependencies]) -> str: customer_name = await ctx.deps.db.customer_name(id=ctx.deps.customer_id) return f”The customer’s name is {customer_name!r}” @support_agent.tool async def customer_balance(ctx: RunContext[SupportDependencies], include_pending: bool) -> float: return await ctx.deps.db.customer_balance( id=ctx.deps.customer_id, include_pending=include_pending ) async def main(): deps = SupportDependencies(customer_id=123, db=DatabaseConn()) result = await support_agent.run(‘What is my balance?’, deps=deps) print(result.data) result = await support_agent.run(‘I just lost my card!’, deps=deps) print(result.data) Key Concepts Why PydanticAI Matters PydanticAI simplifies the development of production-ready AI agents by bridging the gap between unstructured LLM outputs and structured, validated data. Its ability to handle complex workflows with type safety and its seamless integration with modern AI tools make it an essential framework for developers. As we move toward a future dominated by multi-agent AI systems, PydanticAI is poised to be a cornerstone in building reliable, scalable, and secure AI-driven applications. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
gettectonic.com