PHI Archives - gettectonic.com - Page 9
BERT and GPT

BERT and GPT

Breakthroughs in Language Models: From Word2Vec to Transformers Language models have rapidly evolved since 2018, driven by advancements in neural network architectures for text representation. This journey began with Word2Vec and N-Grams in 2013, followed by the emergence of Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks in 2014. The pivotal moment came with the introduction of the Attention Mechanism, which paved the way for large pre-trained models and transformers. BERT and GPT. From Word Embedding to Transformers The story of language models begins with word embedding. What is Word Embedding? Word embedding is a technique in natural language processing (NLP) where words are represented as vectors in a continuous vector space. These vectors capture semantic meanings, allowing words with similar meanings to have similar representations. For instance, in a word embedding model, “king” and “queen” would have vectors close to each other, reflecting their related meanings. Similarly, “car” and “truck” would be near each other, as would “cat” and “dog.” However, “car” and “dog” would not have close vectors due to their different meanings. A notable example of word embedding is Word2Vec. Word2Vec: Neural Network Model Using N-Grams Introduced by Mahajan, Patil, and Sankar in 2013, Word2Vec is a neural network model that uses n-grams by training on context windows of words. It has two main approaches: Both methods help capture semantic relationships, providing meaningful word embeddings that facilitate various NLP tasks like sentiment analysis and machine translation. Recurrent Neural Networks (RNNs) RNNs are designed for sequential data, processing inputs sequentially and maintaining a hidden state that captures information about previous inputs. This makes them suitable for tasks like time series prediction and natural language processing. The concept of RNNs can be traced back to 1925 with the Ising model, used to simulate magnetic interactions analogous to RNNs’ state transitions for sequence learning. Long Short-Term Memory (LSTM) Networks LSTMs, introduced by Hochreiter and Schmidhuber in 1997, are a specialized type of RNN designed to overcome the limitations of standard RNNs, particularly the vanishing gradient problem. They use gates (input, output, and forget gates) to regulate information flow, enabling them to maintain long-term dependencies and remember important information over long sequences. Comparing Word2Vec, RNNs, and LSTMs The Attention Mechanism and Its Impact The attention mechanism, introduced in the paper “Attention Is All You Need” by Vaswani et al., is a key component in transformers and large pre-trained language models. It allows models to focus on specific parts of the input sequence when generating output, assigning different weights to different words or tokens, and enabling the model to prioritize important information and handle long-range dependencies effectively. Transformers: Revolutionizing Language Models Transformers use self-attention mechanisms to process input sequences in parallel, capturing contextual relationships between all tokens in a sequence simultaneously. This improves handling of long-term dependencies and reduces training time. The self-attention mechanism identifies the relevance of each token to every other token within the input sequence, enhancing the model’s ability to understand context. Large Pre-Trained Language Models: BERT and GPT Both BERT (Bidirectional Encoder Representations from Transformers) and GPT (Generative Pre-trained Transformer) are based on the transformer architecture. BERT Introduced by Google in 2018, BERT pre-trains deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. This enables BERT to create state-of-the-art models for tasks like question answering and language inference without substantial task-specific architecture modifications. GPT Developed by OpenAI, GPT models are known for generating human-like text. They are pre-trained on large corpora of text and fine-tuned for specific tasks. GPT is majorly generative and unidirectional, focusing on creating new text content like poems, code, scripts, and more. Major Differences Between BERT and GPT In conclusion, while both BERT and GPT are based on the transformer architecture and are pre-trained on large corpora of text, they serve different purposes and excel in different tasks. The advancements from Word2Vec to transformers highlight the rapid evolution of language models, enabling increasingly sophisticated NLP applications. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Consumer Chatbot Technology

Consumer Chatbot Technology

The Reality Behind AI Chatbots and the Path to Autonomous AI In the rush to adopt the latest Consumer Chatbot Technology, it’s easy to overlook a fundamental reality: consumer chatbot technology isn’t ready for enterprise use—and it likely never will be. The reason is simple: AI assistants are only as effective as the data that powers them. Most large language models (LLMs) are trained on data from public websites, which lack the specific business and customer data that enterprises need. This means consumer bots can’t adequately assist employees in selling products, marketing merchandise, or improving productivity, as they lack the necessary personalization and business context. To achieve the vision of AI that goes beyond simple chatbots performing basic tasks—like drafting emails, essays, blogs, or graphics—to a more advanced role where AI acts autonomously and addresses business-critical needs, a different approach is needed. This vision involves AI taking action with minimal human intervention, using digital agents to identify and respond to these needs. At Salesforce, we are pursuing a clear path to AI that not only takes action but also automates routine tasks, all while adhering to established business rules, permissions, and context. Instead of relying solely on LLMs, which primarily focus on generating human-like text, future AI assistants will depend on large action models (LAMs) that integrate decision-making and action-taking capabilities. The Journey Toward AI Autonomy Our journey towards this vision began with the Salesforce Data Cloud, a robust data engine built on the Einstein 1 Platform. This platform integrates data from across the enterprise and third-party repositories, enabling companies to activate their data, automate workflows, personalize customer interactions, and develop smarter AI solutions. Recognizing the shift from generative AI to autonomous AI, Salesforce introduced Einstein Copilot, the industry’s first conversational, enterprise-class AI assistant. Integrated across the Salesforce ecosystem, Einstein Copilot utilizes an organization’s data, whether it’s behind a firewall or in an external data lake, to act as a reasoning engine. It interprets user intents, interacts with the most suitable AI model, solves problems, generates relevant content, and provides decision-making support. Expanding the Role of AI in Business Since its launch in February 2024, Salesforce has been expanding Einstein Copilot’s library of actions to meet specific business needs in sales, service, marketing, data analysis, and industries like ecommerce, financial services, healthcare, and education. These “actions” are akin to LEGO blocks—discrete tasks that can be assembled to achieve desired project outcomes. For example, a sales representative might use Einstein Copilot to generate a personalized close plan, gain insights into why a deal may not close, or review whether pricing was discussed in a recent call. Einstein Copilot then orchestrates these tasks, provides recommendations, and compiles everything into a detailed report. The ultimate goal is for AI not only to gather and organize information but also to take proactive action. Imagine a sales representative instructing their digital agent to set up meetings with top prospects in a specific territory. The AI could not only identify suitable contacts but also suggest meeting times, plan travel schedules, draft emails, and even create talking points—all of which it could execute autonomously with the representative’s approval. Tectonic dreams of the day AI is smart enough to interpret our search engine typos and produce the results for what we were actually looking for! The Future of AI Autonomy The possibilities for semi-autonomous or fully autonomous AI are vast. As we continue to develop and refine these technologies, the potential for AI to transform business processes and decision-making becomes increasingly tangible. At Salesforce, they are committed to leading this charge, ensuring that our AI solutions not only meet but exceed the expectations of enterprises worldwide. Salesforce is in a strong position to deliver on all of them because of the volume and breadth of data housed in Data Cloud, the heavy workflow traffic in our Customer 360 CRM, and the fact we’ve delivered an enterprise-class copilot that is rapidly expanding its library of actions. It will not happen overnight. The technology needs to advance, organizations and people have to be able to trust AI and be trained to use it in the right ways, and more work will need to be done to ensure the right balance between human involvement and AI autonomy. But with our continued investment in CRM, data, and trusted AI, we will achieve that vision before too long. Salesforce is in a strong position to deliver on all of them because of the volume and breadth of data housed in Data Cloud, the heavy workflow traffic in our Customer 360 CRM, and the fact we’ve delivered an enterprise-class copilot that is rapidly expanding its library of actions. Jayesh Govindarajan, Senior Vice President, Salesforce AI Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

An Eye on AI

Humans often cast uneasy glances over their shoulders as artificial intelligence (AI) rapidly advances, achieving feats once exclusive to human intellect. An Eye on AI should ease their troubled minds. AI-driven chatbots can now pass rigorous exams like the bar and medical licensing tests, generate tailored images and summaries from complex texts, and simulate human-like interactions. Yet, amidst these advancements, concerns loom large — fears of widespread job loss, existential threats to humanity, and the specter of machines surpassing human control to safeguard their own existence. Skeptics of these doomsday scenarios argue that today’s AI lacks true cognition. They assert that AI, including sophisticated chatbots, operates on predictive algorithms that generate responses based on patterns in data inputs rather than genuine understanding. Even as AI capabilities evolve, it remains tethered to processing inputs into outputs without cognitive reasoning akin to human thought processes. So, are we venturing into perilous territory or merely witnessing incremental advancements in technology? Perhaps both. While the prospect of creating a malevolent AI akin to HAL 9000 from “2001: A Space Odyssey” seems far-fetched, there is a prudent assumption that human ingenuity, prioritizing survival, would prevent engineering our own demise through AI. Yet, the existential question remains — are we sufficiently safeguarded against ourselves? Doubts about AI’s true cognitive abilities persist despite its impressive functionalities. While AI models like large language models (LLMs) operate on vast amounts of data to simulate human reasoning and context awareness, they fundamentally lack consciousness. AI’s creativity, exemplified by its ability to invent new ideas or solve complex problems, remains a simulated mimicry rather than authentic intelligence. Moreover, AI’s domain-specific capabilities are constrained by its training data and programming limitations, unlike human cognition which adapts dynamically to diverse and novel situations. AI excels in pattern recognition tasks, from diagnosing diseases to classifying images, yet it does so without comprehending the underlying concepts or contexts. For instance, in medical diagnostics or art authentication, AI can achieve remarkable accuracy in identifying patterns but lacks the interpretative skills and contextual understanding that humans possess. This limitation underscores the necessity for human oversight and critical judgment in areas where AI’s decisions impact significant outcomes. The evolution of AI, rooted in neural network technologies and deep learning paradigms, marks a profound shift in how we approach complex tasks traditionally performed by human experts. However, AI’s reliance on data patterns and algorithms highlights its inherent limitations in achieving genuine cognitive understanding or autonomous decision-making. In conclusion, while AI continues to transform industries and enhance productivity, its capabilities are rooted in computational algorithms rather than conscious reasoning. As we navigate the future of AI integration, maintaining a balance between leveraging its efficiencies and preserving human expertise and oversight remains paramount. Ultimately, the intersection of AI and human intelligence will define the boundaries of technological advancement and ethical responsibility in the years to come. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
RAG Chunking Method

RAG Chunking Method

Enhancing Retrieval-Augmented Generation (RAG) Systems with Topic-Based Document Segmentation Dividing large documents into smaller, meaningful parts is crucial for the performance of Retrieval-Augmented Generation (RAG) systems. RAG Chunking Method. These systems benefit from frameworks that offer multiple document-splitting options. This Tectonic insight introduces an innovative approach that identifies topic changes using sentence embeddings, improving the subdivision process to create coherent topic-based sections. RAG Systems: An Overview A Retrieval-Augmented Generation (RAG) system combines retrieval-based and generation-based models to enhance output quality and relevance. It first retrieves relevant information from a large dataset based on an input query, then uses a transformer-based language model to generate a coherent and contextually appropriate response. This hybrid approach is particularly effective in complex or knowledge-intensive tasks. Standard Document Splitting Options Before diving into the new approach, let’s explore some standard document splitting methods using the LangChain framework, known for its robust support of various natural language processing (NLP) tasks. LangChain Framework: LangChain assists developers in applying large language models across NLP tasks, including document splitting. Here are key splitting methods available: Introducing a New Approach: Topic-Based Segmentation Segmenting large-scale documents into coherent topic-based sections poses significant challenges. Traditional methods often fail to detect subtle topic shifts accurately. This innovative approach, presented at the International Conference on Artificial Intelligence, Computer, Data Sciences, and Applications (ACDSA 2024), addresses this issue using sentence embeddings. The Core Challenge Large documents often contain multiple topics. Conventional segmentation techniques struggle to identify precise topic transitions, leading to fragmented or overlapping sections. This method leverages Sentence-BERT (SBERT) to generate embeddings for individual sentences, which reflect changes in the vector space as topics shift. Approach Breakdown 1. Using Sentence Embeddings: 2. Calculating Gap Scores: 3. Smoothing: 4. Boundary Detection: 5. Clustering Segments: Algorithm Pseudocode Gap Score Calculation: pythonCopy code# Example pseudocode for gap score calculation def calculate_gap_scores(sentences, n): embeddings = [sbert.encode(sentence) for sentence in sentences] gap_scores = [] for i in range(len(sentences) – n): before = embeddings[i:i+n] after = embeddings[i+n:i+2*n] score = cosine_similarity(before, after) gap_scores.append(score) return gap_scores Gap Score Smoothing: pythonCopy code# Example pseudocode for smoothing gap scores def smooth_gap_scores(gap_scores, k): smoothed_scores = [] for i in range(len(gap_scores)): start = max(0, i – k) end = min(len(gap_scores), i + k + 1) smoothed_score = sum(gap_scores[start:end]) / (end – start) smoothed_scores.append(smoothed_score) return smoothed_scores Boundary Detection: pythonCopy code# Example pseudocode for boundary detection def detect_boundaries(smoothed_scores, c): boundaries = [] mean_score = sum(smoothed_scores) / len(smoothed_scores) std_dev = (sum((x – mean_score) ** 2 for x in smoothed_scores) / len(smoothed_scores)) ** 0.5 for i, score in enumerate(smoothed_scores): if score < mean_score – c * std_dev: boundaries.append(i) return boundaries Future Directions Potential areas for further research include: Conclusion This method combines traditional principles with advanced sentence embeddings, leveraging SBERT and sophisticated smoothing and clustering techniques. This approach offers a robust and efficient solution for accurate topic modeling in large documents, enhancing the performance of RAG systems by providing coherent and contextually relevant text sections. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Sales Prospecting Tools

Sales Prospecting Tools

The Complete Guide to Sales Prospecting Tools Sales prospecting tools: Two men examining a touchscreen displaying dashboards and charts. With the right tools, you can spend more time building relationships that convert prospects into loyal customers. Learn how technology can help you identify and engage the right prospects more efficiently. Selling has become more challenging, with 69% of sales professionals agreeing that their jobs are harder now. That’s why sales prospecting tools are crucial—they streamline the process, making it faster and more accurate. When equipped with the right tools, you can focus more on nurturing customer relationships, turning prospects into long-term clients. In this guide, we’ll explore what sales prospecting tools are, key features to look for, and the biggest benefits they provide. What Are Sales Prospecting Tools? Sales prospecting tools are software solutions designed to help sales teams identify, engage, and convert potential customers. These tools enhance the sales prospecting process, enabling sales reps to quickly and effectively reach new buyers. They often integrate with existing platforms, such as Customer Relationship Management (CRM) software and email marketing systems, to optimize outreach and engagement. Typically, prospecting tools focus on outbound marketing, helping sales reps connect with potential customers who may not yet be familiar with the company or product. Types of Sales Prospecting Tools Selecting the right sales prospecting tool depends on your current prospecting methods and future goals. Below are the most common categories of prospecting tools: Lead Generation Tools Lead generation tools help sales teams identify prospects who are ready to purchase. These tools streamline workflows, enhance productivity, and flag potential buyers based on their online activity. For example, they might alert a rep when a prospect searches for solutions related to your product or service. Some lead generation tools also enable mass outreach, such as power dialers that allow sales reps to call multiple prospects simultaneously. Choosing the right lead generation tool depends on how your target customers prefer to engage. For instance, if you have better results from social media interactions than phone calls, a power dialer may not be the best fit. Evaluate your analytics and future goals to determine which tool will maximize your success. CRM Software CRM software manages all customer and prospect interactions across sales, service, marketing, and more. Acting as a single source of truth, CRM platforms centralize all sales activity in one location, allowing leaders to assign prospects and track progress more effectively. With AI-powered features, CRM tools can guide reps on the next best steps and personalize workflows, improving conversion rates. CRMs also provide critical insights for targeting prospects more likely to convert. Social Media Prospecting Tools Social media has become a powerful channel for sales prospecting. Specialized tools scrape social platforms for data to help sales reps identify prospects ready for outreach. For instance, they can track user activity related to the business problem your product solves and notify reps when users engage with relevant content. The integration of AI in social media prospecting tools has further boosted their effectiveness. As AI continues to evolve, expect more sophisticated features in this space. Why Are Sales Prospecting Tools Important? In today’s competitive market, your prospects are also being contacted by your competitors—most of whom are using advanced sales prospecting tools. If you’re not using similar tools, you risk falling behind. Sales prospecting tools help level the playing field by streamlining research and outreach, allowing reps to connect with the right prospects at the right time. However, these tools must be used strategically. Simply contacting more people won’t guarantee more sales. Personalization and targeting remain key. Using the insights provided by these tools, sales reps can tailor their messages and approaches, making each outreach effort more effective. Benefits of Using Sales Prospecting Tools When fully integrated into your sales processes, prospecting tools can deliver substantial benefits, including: Key Features to Look for in Sales Prospecting Tools To ensure your sales prospecting tool adds value to your business, consider the following features: Compliance Keeping up with constantly changing rules around prospecting—especially across different channels—can be daunting. A good prospecting tool automates compliance, ensuring your emails, calls, and social media outreach meet best practices and regulations. Ease of Use Your prospecting tool should simplify your workflow, not complicate it. Look for intuitive interfaces and tools that can automate repetitive tasks, such as dialing multiple numbers or sending emails in bulk. AI-Powered Analytics Tools with AI capabilities can generate valuable insights, such as identifying the best time to call a prospect or suggesting which channel is most likely to yield a response. System Integration Your prospecting tool should seamlessly integrate with existing systems, such as CRMs and marketing automation platforms, to ensure data flows smoothly and insights are actionable across your entire workflow. Customizable and Scalable Your sales process is unique to your business. Opt for customizable and scalable tools that can adapt as your needs change, ensuring you get maximum ROI from your investment. Make Prospecting Work for Your Business Without the right tools, your team is at a disadvantage compared to competitors using advanced sales prospecting technologies. Finding a tool with the right features and customizing it for your specific needs—such as pricing structures and campaign strategies—can empower your team to prospect more efficiently, yielding better results in less time. Content updated October 2024. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents and Open APIs

AI Agents and Open APIs

How AI Agents and Open APIs Are Unlocking New Rebundling Opportunities While much of the 2023-24 excitement surrounding AI has focused on the capabilities of foundational models, the true potential of AI lies in reconfiguring value creation across vertical value chains, not just generating average marketing content. The Vertical AI Opportunity Most AI hype has centered on horizontal B2C applications, but the real transformative power of AI is in vertical B2B industries. This article delves into the opportunities within vertical AI and explores how companies can excel in this emerging space. Short-Term and Long-Term Strategies in Vertical AI In the short term, many vertical AI players focus on developing proprietary, fine-tuned models and user experiences to gain a competitive advantage. These niche models, trained on domain-specific data, often outperform larger foundational models in latency, accuracy, and cost. As models become more fine-tuned, changes in user experience (UX) must integrate these benefits into daily workflows, creating a flywheel effect. Vertical AI companies tend to operate as full-stack providers, integrating interfaces, proprietary models, and proprietary data. This level of integration enhances their defensibility because owning the user interface allows them to continually collect and refine data, improving the model. While this approach is effective in the short term, vertical AI players must consider the broader ecosystem to ensure long-term success. The Shift from Vertical to Horizontal Though vertical AI solutions may dominate in specific niches, long-term success requires moving beyond isolated verticals. Users ultimately prefer unified experiences that minimize switching between multiple platforms. To stay competitive in the long run, vertical AI players will need to evolve into horizontal solutions that integrate across broader ecosystems. Vertical Strategies and AI-Driven Rebundling Looking at the success of vertical SaaS over the last decade provides insight into the future of vertical AI. Companies like Square, Toast, and ServiceTitan have grown by first gaining adoption in a focused use case, then rapidly expanding by rebundling adjacent capabilities. This “rebundling” process—consolidating multiple unbundled capabilities into a comprehensive, customer-centric offering—helps vertical players establish themselves as the hub. The same principle applies to vertical AI, where the end game involves going vertical to later expand horizontally. AI’s Role in Rebundling The key to long-term competitive advantage in vertical AI lies not just in addressing a single pain point but in using AI agents to rebundle workflows. AI agents serve as a new hub for rebundling, enabling vertical AI players to integrate and coordinate diverse workflows across their solutions. Rebundling Workflows with AI Business workflows are often fragmented, spread across siloed software systems. Managers currently bundle these workflows together to meet business goals by coordinating across silos. But with advances in technology, B2B workflows are being transformed by increasing interoperability and the rise of AI agents. The Rebundling Power of AI Agents Unlike traditional software that automates specific tasks, AI agents focus on achieving broader goals. This enables them to take over the goal-seeking functions traditionally managed by humans, effectively unbundling goals from specific roles and establishing a new locus for rebundling. Vertical AI Players: Winners and Losers The effectiveness of vertical AI players will depend on the sophistication of their AI agents and the level of interoperability with third-party resources. Industries that offer high interoperability and sophisticated AI agents present the most significant opportunities for value creation. The End Game: From Vertical to Horizontal Ultimately, the goal for vertical AI players is to leverage their vertical advantage to develop a horizontal hub position. By using AI agents to rebundle workflows and integrate adjacent capabilities, vertical AI companies can transition from niche providers to central players in the broader ecosystem. This path—going vertical first to then expand horizontally—will define the winners in the AI-driven future of business transformation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Impact of AI Agents Across Key Sectors in 2024

Impact of AI Agents Across Key Sectors in 2024

Sophisticated autonomous digital entities are already transforming our lives, industries, and the way we engage with technology. What will be the Impact of AI Agents Across Key Sectors in 2024? While much attention has been given to Generative AI (Gen AI), the next major leap forward comes from AI Agents. This emerging technology is set to revolutionize how we work and interact with the world. How AI Agents Will Shape Daily Life AI Agents: An OverviewAI Agents, also called digital assistants or AI-driven entities, are advanced systems designed to perform tasks and provide services autonomously. They use machine learning, natural language processing, and other AI technologies to understand user needs, solve problems, and complete tasks without direct human intervention. The Impact of AI Agents Across Key Sectors in 2024 Personalization and AssistanceAI Agents are increasingly embedded in our personal and professional routines. By learning our preferences, habits, and needs, they offer personalized recommendations, such as curating music playlists, suggesting films, or creating custom workout plans. Their ability to deliver tailored assistance makes everyday life more seamless and enjoyable. Healthcare AdvancementsIn healthcare, AI Agents are making a significant impact. They can analyze medical records, provide diagnostic insights, and assist with treatment planning. Multi-modal agents even process medical imaging to aid in diagnoses, marking a groundbreaking advancement for both healthcare professionals and patients. Efficiency in BusinessAI Agents are transforming business operations by improving customer service through 24/7 automated chatbots and streamlining processes in supply chain management, human resources, and data analysis. These systems help optimize operations and support more informed decision-making. Education and LearningIn education, AI Agents offer personalized learning experiences tailored to each student’s needs, helping them learn at their own pace. Teachers also benefit, as AI Agents provide insights to customize instruction and track student progress. Enhanced CybersecurityAs cybersecurity threats evolve, AI Agents play a key role in identifying and mitigating risks. They detect anomalies in real-time, helping organizations protect their data and systems from breaches and attacks. Environmental ImpactAI Agents are contributing to sustainability by optimizing energy consumption in buildings, improving waste management, and monitoring environmental changes. Their role in addressing climate change is increasingly critical. Research and InnovationIn fields like drug discovery and climate modeling, AI Agents accelerate research by processing and analyzing vast amounts of data. Their involvement speeds up discoveries and innovation across multiple domains. Impact of AI Agents Across Key Sectors in 2024 In 2024, AI Agents have become much more than just digital assistants; they are driving transformative change across industries and daily life. Their ability to understand, adapt, and respond to human needs makes technology more efficient, personalized, and accessible. However, as AI Agents continue to evolve, it is crucial to consider ethical concerns and promote responsible use. With mindful integration, AI Agents hold the promise of a more connected, sustainable, and innovative future. If you are ready to explore AI Agents in your business, contact Tectonic today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
More Sustainable and Equitable Future Through AI

More Sustainable and Equitable Future Through AI

Salesforce has unveiled a series of initiatives aimed at fostering a more sustainable and equitable future through AI. The company has introduced its Sustainable AI Policy Principles, a framework designed to guide AI regulation with a focus on minimizing environmental impact and promoting climate innovation. Additionally, Salesforce has selected five new nonprofits for its Salesforce Accelerator – AI for Impact, which targets climate action. This initiative will enable these purpose-driven organizations to harness AI solutions to tackle the pressing challenges of climate change. Why It Matters Prioritizing responsible AI development is crucial for leveraging technology to make a positive impact while ensuring that equity and sustainability remain central. Salesforce Sustainable AI Policy PrinciplesRead Them Here Key Aspects of the Principles The Sustainable AI Policy Principles extend Salesforce’s commitment to advocating for science-based policies that support a just and equitable transition to a 1.5-degree future. These principles offer best practices for lawmakers and regulators on: Salesforce is also the first tech company to support the Transformational AI to Modernize the Economy (TAME) legislation, which aims to enhance AI’s role in predicting and responding to extreme weather events. The AI for Impact Accelerator The AI for Impact cohort will support climate-focused nonprofits with technology, investments, and philanthropy to develop AI solutions that benefit the environment. Alongside product donations and $2 million in funding, these organizations will work on AI-powered initiatives in three crucial areas: Participants will also receive a year of pro bono consulting from Salesforce experts in strategy, planning, responsible AI use, data strategy, and technical architecture. Accelerator Participants Include: Moving Forward Suzanne DiBianca, EVP and Chief Impact Officer at Salesforce, emphasizes the importance of developing equitable and sustainable AI technology. “With AI transforming our lives and work, it is vital to ensure the technology is developed responsibly. We are excited to support climate nonprofits committed to sustainable AI innovation and advocate for clear policies that guide responsible AI development.” Quotes from Participants: Together, these efforts aim to accelerate the positive impact of technology, ensuring it benefits everyone and supports a sustainable future. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Einstein Prediction Builder

Einstein Prediction Builder

Einstein Prediction Builder, a sophisticated yet user-friendly tool from Salesforce Einstein, empowers users to generate predictions effortlessly, without requiring machine learning expertise or coding skills. This capability enables businesses to augment their operations with foresight-driven insights. As of the Spring ’20 release, all Enterprise Edition and above orgs can build one free prediction with Einstein Prediction Builder. Consider the potential business outcomes unlocked by leveraging Einstein Prediction Builder. Let’s delve into a hypothetical scenario: Meet Mr. Claus, the owner of ‘North Claus,’ a business that began as a modest family venture but gradually expanded its footprint. As ‘North Claus’ burgeoned across 10 countries, Mr. Claus recognized the need for Business Intelligence (BI) to navigate market dynamics effectively. BI entails gathering insights to forecast and comprehend market shifts—an imperative echoed by Jack Ma’s famous adage, “Adopt and change before any major trends and changes.” Intrigued by the prospect of BI, especially amidst the disruptive backdrop of Covid-19, Mr. Claus embarked on a journey to implement it in his company. The Formation of Business Intelligence: In today’s digital landscape, businesses amass vast amounts of data from diverse sources such as sales, customer interactions, and website traffic. This data serves as the bedrock for deriving actionable insights, enabling organizations to formulate forward-looking strategies. However, developing robust BI capabilities poses several challenges: Mr. Claus grappled with these challenges as he endeavored to develop BI independently. Recognizing the complexity involved, he turned to Salesforce, particularly intrigued by Einstein Prediction Builder. Einstein Prediction Builder Trailhead Understanding Einstein Prediction Builder: Einstein Prediction Builder, available in various Salesforce editions, leverages checkbox and formula fields to generate predictions. Before utilizing Prediction Builder, certain prerequisites must be met: Creating Einstein Predictions: To initiate the creation of Einstein Predictions, users navigate to Setup and access the Einstein Prediction Builder. The guided Setup simplifies the process, guiding users through relevant data inputs at each step. Once configured, predictions can be enabled, disabled, or cloned as needed. Key Features and Applications: Einstein Predictions integrate seamlessly with Salesforce Lightning, providing predictive insights directly on record pages. These predictions offer invaluable guidance on various aspects, such as sales opportunities and payment delays. Additionally, Prediction Builder facilitates packaging of predictions for seamless deployment across orgs and supports integration with external platforms like Tableau. Prediction Builder equips businesses with the intelligence needed to anticipate market trends, optimize workflows, and enhance customer interactions. As Mr. Claus discovered, embracing predictive analytics can revolutionize decision-making and drive sustainable growth. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
How AI is Raising the Stakes in Phishing Attacks

How AI is Raising the Stakes in Phishing Attacks

Cybercriminals are increasingly using advanced AI, including tools like ChatGPT, to execute highly convincing phishing campaigns that mimic legitimate communications with uncanny accuracy. As AI-powered phishing becomes more sophisticated, cybersecurity practitioners must adopt AI and machine learning defenses to stay ahead. What are AI-Powered Phishing Attacks? Phishing, a long-standing cybersecurity issue, has evolved from crude scams into refined attacks that can mimic trusted entities like Amazon, postal services, or colleagues. Leveraging social engineering, these scams trick people into clicking malicious links, downloading harmful files, or sharing sensitive information. However, AI is elevating this threat by making phishing attacks more convincing, timely, and challenging to detect. General Phishing Attacks Traditionally, phishing emails were often easy to spot due to grammatical errors or poor formatting. AI, however, eliminates these mistakes, creating messages that appear professionally written. Additionally, AI language models can gather real-time data from news and corporate sites, embedding relevant details that create urgency and heighten the attack’s credibility. AI chatbots can also generate business email compromise attacks or whaling campaigns at a massive scale, boosting both the volume and sophistication of these threats. Spear Phishing Spear phishing involves targeting specific individuals with highly customized messages based on data gathered from social media or data breaches. AI has supercharged this tactic, enabling attackers to craft convincing, personalized emails almost instantly. During a cybersecurity study, AI-generated phishing emails outperformed human-crafted ones in terms of convincing recipients to click on malicious links. With the help of large language models (LLMs), attackers can create hyper-personalized emails and even deepfake phone calls and videos. Vishing and Deepfakes Vishing, or voice phishing, is another tactic on the rise. Traditionally, attackers would impersonate someone like a company executive or trusted colleague over the phone. With AI, they can now create deepfake audio to mimic a specific person’s voice, making it even harder for victims to discern authenticity. For example, an employee may receive a voice message that sounds exactly like their CFO, urgently requesting a bank transfer. How to Defend Against AI-Driven Phishing Attacks As AI-driven phishing becomes more prevalent, organizations should adopt the following defense strategies: How AI Improves Phishing Defense AI can also bolster phishing defenses by analyzing threat patterns, personalizing training, and monitoring for suspicious activity. GenAI, for instance, can tailor training to individual users’ weaknesses, offer timely phishing simulations, and assess each person’s learning needs to enhance cybersecurity awareness. AI can also predict potential phishing trends based on data such as attack frequency across industries, geographical locations, and types of targets. These insights allow security teams to anticipate attacks and proactively adapt defenses. Preparing for AI-Enhanced Phishing Threats Businesses should evaluate their risk level and implement corresponding safeguards: AI, and particularly LLMs, are transforming phishing attacks, making them more dangerous and harder to detect. As digital footprints grow and personalized data becomes more accessible, phishing attacks will continue to evolve, including falsified voice and video messages that can trick even the most vigilant employees. By proactively integrating AI defenses, organizations can better protect against these advanced phishing threats. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Harnessing Sales Data

Harnessing Sales Data

Harnessing Sales Data for Better Insights and Rapid Deal Closure Sales data is a critical asset for gaining insights and closing deals swiftly. With the ever-expanding data footprint, including customer response rates, leads in the pipeline, and quota attainment, tracking these metrics is essential. Ignoring them can be detrimental, as nearly all sales professionals recognize the importance of real-time data in meeting customer expectations, according to the Trends in Data and Analytics for Sales Report. However, concerns about data setup for generative AI and data accuracy persist. Sixty-three percent of sales professionals report that their company’s data isn’t optimized for AI, and only 42% are confident in their data’s accuracy. The demand for sales data has become a focal point for sales leaders and representatives, who increasingly rely on data to enhance customer engagement and productivity through trusted sources and AI integration. What is Sales Data? Sales data encompasses two main categories: external data, which includes information about prospects such as demographics, interests, behavior, and engagement; and internal sales data, including deal attributes and sales performance metrics. This data helps inform deal actions, assess progress toward sales targets or key performance indicators (KPIs), and supports tools like AI to enhance efficiency. Why is Sales Data Important? Sales data provides a measurable framework for all sales activities, enabling the setting of performance benchmarks and targets. It helps identify risks in the pipeline and highlights opportunities for upselling or fostering competition among sales reps. The data is also crucial for leveraging generative AI, which can automate tasks such as email drafting and sales pitch creation, provided the data is accurate and well-organized. Types of Sales Data Collecting and Utilizing Sales Data To effectively collect and utilize sales data, invest in a CRM system that serves as a centralized data repository with analytics capabilities. Automate data collection within the CRM, integrate data from other tools, and prioritize the security of sensitive information. Visualizing data through dashboards can help track progress toward business goals and make informed decisions. Real-Life Application: A Case Study A global consulting firm used sales data to enhance win rates and accelerate deal velocity. By integrating CRM analytics with data from various sources, the firm identified key deal attributes impacting success and adjusted strategies accordingly. The use of AI-driven “opportunity scores” further enabled the firm to monitor deal health and optimize resource allocation. Essential Tools for Harnessing Sales Data Turning Sales Data into Actionable Insights Regularly reviewing CRM-generated insights and adjusting strategies based on these insights is crucial for closing more deals and delivering consistent value to customers. By focusing on data-driven decision-making, sales teams can stay competitive and meet evolving customer needs. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
LLM Knowledge Test

LLM Knowledge Test

Large Language Models. How much do you know about them? Take the LLM Knowledge Test to find out. Question 1Do you need to have a vector store for all your text-based LLM use cases? A. Yes B. No Correct Answer: B ExplanationA vector store is used to store the vector representation of a word or sentence. These vector representations capture the semantic meaning of the words or sentences and are used in various NLP tasks. However, not all text-based LLM use cases require a vector store. Some tasks, such as summarization, sentiment analysis, and translation, do not need context augmentation. Here is why: Question 2Which technique helps mitigate bias in prompt-based learning? A. Fine-tuning B. Data augmentation C. Prompt calibration D. Gradient clipping Correct Answer: C ExplanationPrompt calibration involves adjusting prompts to minimize bias in the generated outputs. Fine-tuning modifies the model itself, while data augmentation expands the training data. Gradient clipping prevents exploding gradients during training. Question 3Which of the following is NOT a technique specifically used for aligning Large Language Models (LLMs) with human values and preferences? A. RLHF B. Direct Preference Optimization C. Data Augmentation Correct Answer: C ExplanationData Augmentation is a general machine learning technique that involves expanding the training data with variations or modifications of existing data. While it can indirectly impact LLM alignment by influencing the model’s learning patterns, it’s not specifically designed for human value alignment. Incorrect Options: A) Reinforcement Learning from Human Feedback (RLHF) is a technique where human feedback is used to refine the LLM’s reward function, guiding it towards generating outputs that align with human preferences. B) Direct Preference Optimization (DPO) is another technique that directly compares different LLM outputs based on human preferences to guide the learning process. Question 4In Reinforcement Learning from Human Feedback (RLHF), what describes “reward hacking”? A. Optimizes for desired behavior B. Exploits reward function Correct Answer: B ExplanationReward hacking refers to a situation in RLHF where the agent discovers unintended loopholes or biases in the reward function to achieve high rewards without actually following the desired behavior. The agent essentially “games the system” to maximize its reward metric. Why Option A is Incorrect:While optimizing for the desired behavior is the intended outcome of RLHF, it doesn’t represent reward hacking. Option A describes a successful training process. In reward hacking, the agent deviates from the desired behavior and finds an unintended way to maximize the reward. Question 5Fine-tuning GenAI model for a task (e.g., Creative writing), which factor significantly impacts the model’s ability to adapt to the target task? A. Size of fine-tuning dataset B. Pre-trained model architecture Correct Answer: B ExplanationThe architecture of the pre-trained model acts as the foundation for fine-tuning. A complex and versatile architecture like those used in large models (e.g., GPT-3) allows for greater adaptation to diverse tasks. The size of the fine-tuning dataset plays a role, but it’s secondary. A well-architected pre-trained model can learn from a relatively small dataset and generalize effectively to the target task. Why A is Incorrect:While the size of the fine-tuning dataset can enhance performance, it’s not the most crucial factor. Even a massive dataset cannot compensate for limitations in the pre-trained model’s architecture. A well-designed pre-trained model can extract relevant patterns from a smaller dataset and outperform a less sophisticated model with a larger dataset. Question 6What does the self-attention mechanism in transformer architecture allow the model to do? A. Weigh word importance B. Predict next word C. Automatic summarization Correct Answer: A ExplanationThe self-attention mechanism in transformers acts as a spotlight, illuminating the relative importance of words within a sentence. In essence, self-attention allows transformers to dynamically adjust the focus based on the current word being processed. Words with higher similarity scores contribute more significantly, leading to a richer understanding of word importance and sentence structure. This empowers transformers for various NLP tasks that heavily rely on context-aware analysis. Incorrect Options: Question 7What is one advantage of using subword algorithms like BPE or WordPiece in Large Language Models (LLMs)? A. Limit vocabulary size B. Reduce amount of training data C. Make computationally efficient Correct Answer: A ExplanationLLMs deal with massive amounts of text, leading to a very large vocabulary if you consider every single word. Subword algorithms like Byte Pair Encoding (BPE) and WordPiece break down words into smaller meaningful units (subwords) which are then used as the vocabulary. This significantly reduces the vocabulary size while still capturing the meaning of most words, making the model more efficient to train and use. Incorrect Answer Explanations: Question 8Compared to Softmax, how does Adaptive Softmax speed up large language models? A. Sparse word reps B. Zipf’s law exploit C. Pre-trained embedding Correct Answer: B ExplanationStandard Softmax struggles with vast vocabularies, requiring expensive calculations for every word. Imagine a large language model predicting the next word in a sentence. Softmax multiplies massive matrices for each word in the vocabulary, leading to billions of operations! Adaptive Softmax leverages Zipf’s law (common words are frequent, rare words are infrequent) to group words by frequency. Frequent words get precise calculations in smaller groups, while rare words are grouped together for more efficient computations. This significantly reduces the cost of training large language models. Incorrect Answer Explanations: Question 9Which configuration parameter for inference can be adjusted to either increase or decrease randomness within the model output layer? A. Max new tokens B. Top-k sampling C. Temperature Correct Answer: C ExplanationDuring text generation, large language models (LLMs) rely on a softmax layer to assign probabilities to potential next words. Temperature acts as a key parameter influencing the randomness of these probability distributions. Why other options are incorrect: Question 10What transformer model uses masking & bi-directional context for masked token prediction? A. Autoencoder B. Autoregressive C. Sequence-to-sequence Correct Answer: A ExplanationAutoencoder models are pre-trained using masked language modeling. They use randomly masked tokens in the input sequence, and the pretraining objective is to predict the masked tokens to reconstruct the original sentence. Question 11What technique allows you to scale model

Read More
Ethical and Responsible AI

Ethical and Responsible AI

Responsible AI and ethical AI are closely connected, with each offering complementary yet distinct principles for the development and use of AI systems. Organizations that aim for success must integrate both frameworks, as they are mutually reinforcing. Responsible AI emphasizes accountability, transparency, and adherence to regulations. Ethical AI—sometimes called AI ethics—focuses on broader moral values like fairness, privacy, and societal impact. In recent discussions, the significance of both has come to the forefront, encouraging organizations to explore the unique advantages of integrating these frameworks. While Responsible AI provides the practical tools for implementation, ethical AI offers the guiding principles. Without clear ethical grounding, responsible AI initiatives can lack purpose, while ethical aspirations cannot be realized without concrete actions. Moreover, ethical AI concerns often shape the regulatory frameworks responsible AI must comply with, showing how deeply interwoven they are. By combining ethical and responsible AI, organizations can build systems that are not only compliant with legal requirements but also aligned with human values, minimizing potential harm. The Need for Ethical AI Ethical AI is about ensuring that AI systems adhere to values and moral expectations. These principles evolve over time and can vary by culture or region. Nonetheless, core principles—like fairness, transparency, and harm reduction—remain consistent across geographies. Many organizations have recognized the importance of ethical AI and have taken initial steps to create ethical frameworks. This is essential, as AI technologies have the potential to disrupt societal norms, potentially necessitating an updated social contract—the implicit understanding of how society functions. Ethical AI helps drive discussions about this evolving social contract, establishing boundaries for acceptable AI use. In fact, many ethical AI frameworks have influenced regulatory efforts, though some regulations are being developed alongside or ahead of these ethical standards. Shaping this landscape requires collaboration among diverse stakeholders: consumers, activists, researchers, lawmakers, and technologists. Power dynamics also play a role, with certain groups exerting more influence over how ethical AI takes shape. Ethical AI vs. Responsible AI Ethical AI is aspirational, considering AI’s long-term impact on society. Many ethical issues have emerged, especially with the rise of generative AI. For instance, machine learning bias—when AI outputs are skewed due to flawed or biased training data—can perpetuate inequalities in high-stakes areas like loan approvals or law enforcement. Other concerns, like AI hallucinations and deepfakes, further underscore the potential risks to human values like safety and equality. Responsible AI, on the other hand, bridges ethical concerns with business realities. It addresses issues like data security, transparency, and regulatory compliance. Responsible AI offers practical methods to embed ethical aspirations into each phase of the AI lifecycle—from development to deployment and beyond. The relationship between the two is akin to a company’s vision versus its operational strategy. Ethical AI defines the high-level values, while responsible AI offers the actionable steps needed to implement those values. Challenges in Practice For modern organizations, efficiency and consistency are key, and standardized processes are the norm. This applies to AI development as well. Ethical AI, while often discussed in the context of broader societal impacts, must be integrated into existing business processes through responsible AI frameworks. These frameworks often include user-friendly checklists, evaluation guides, and templates to help operationalize ethical principles across the organization. Implementing Responsible AI To fully embed ethical AI within responsible AI frameworks, organizations should focus on the following areas: By effectively combining ethical and responsible AI, organizations can create AI systems that are not only technically and legally sound but also morally aligned and socially responsible. Content edited October 2024. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI Then and Now

AI Then and Now

AI: Transforming User Interactions and Experiences Have you ever been greeted by a waitress who already knows your breakfast order? It’s a relief not to detail every aspect — temperature, how do you want your eggs, what kind of juice, bacon or sausage, etc. This example encapsulates the journey we’re navigating with AI today. AI Then and Now. This article isn’t about ordering breakfast; it’s about the evolution of user interactions, particularly how generative AI might evolve based on past trends in graphical user interfaces (GUIs) and emerging trends in AI interactions. We’ll explore the significance of context bundling, user curation, trust, and ecosystems as key trends in AI user experience in this Tectonic insight. From Commands to Conversations Let’s rewind to the early days of computing when users had to type precise commands in a Command-Line Interface (CLI). Imagine the challenge of remembering the exact command to open a file or copy data. This complexity meant that only a few people could use computers effectively. To reach a broader audience, a shift was necessary. You might think Apple’s creation of the mouse and drop down menues was the pinnacle of success, but truly the evolution predates Apple. Enter ELIZA in 1964, an early natural language processing program that engaged users in basic conversations through keyword recognition and scripted responses. Although groundbreaking, ELIZA’s interactions were far from flexible or scalable. Around the same time, Xerox PARC was developing the Graphical User Interface (GUI), later popularized by Apple in 1984 and Microsoft shortly thereafter. GUIs transformed computing by replacing complex commands with icons, menus, and windows navigable by a mouse. This innovation made computers accessible and intuitive for everyday tasks, laying the groundwork for technology’s universal role in our lives. Not only did it make computing accessible to the masses but it layed the foundation upon which every household would soon have one or more computers! The Evolution of AI Interfaces Just as early computing transitioned from the complexity of CLI to the simplicity of GUIs, we’re witnessing a parallel evolution in generative AI. User prompts are essentially mini-programs crafted in natural language, with the quality of outcomes depending on our prompt engineering skills. We are moving towards bundling complex inputs into simpler, more user-friendly interfaces with the complexity hidden in the background. Context Bundling Context bundling simplifies interactions by combining related information into a single command. This addresses the challenge of conveying complex instructions to achieve desired outcomes, enhancing efficiency and output quality by aligning user intent and machine understanding in one go. We’ve seen context bundling emerge across generative AI tools. For instance, sample prompts in Edge, Google Chrome’s tab manager, and trigger-words in Stable Diffusion fine-tune AI outputs. Context bundling isn’t always about conversation; it’s about achieving user goals efficiently without lengthy interactions. Context bundling is the difference in ordering the eggs versus telling the cook how to crack and prepare it. User Curation Despite advancements, there remains a spectrum of needs where users must refine outputs to achieve specific goals. This is especially true for tasks like researching, brainstorming, creating content, refining images, or editing. As context windows and multi-modal capabilities expand, guiding users through complexity becomes even more crucial. Humans constantly curate their experiences, whether by highlighting text in a book or picking out keywords in a conversation. Similarly, users interacting with ChatGPT often highlight relevant information to guide their next steps. By making it easier for users to curate and refine their outputs, AI tools can offer higher-quality results and enrich user experiences. User creation takes ordering breakfast from a manual conversational process to the click of a button on a vending-like system. Designing for Trust Trust is a significant barrier to the widespread adoption of generative AI. To build trust, we need to consider factors such as previous experiences, risk tolerance, interaction consistency, and social context. Without trust, in AI or your breakfast order, it becomes easier just to do it yourself. Trust is broken if the waitress brings you the wrong items, or if the artificial intelligence fails to meet your reasonable expectations. Context Ecosystems Generative AI has revolutionized productivity by lowering the barrier for users to start tasks, mirroring the benefits and journey of the GUI. However, modern UX has evolved beyond simple interfaces. The future of generative AI lies in creating ecosystems where AI tools collaborate with users in a seamless workflow. We see emergent examples like Edge, Chrome, and Pixel Assistant integrating AI functionality into their software. This integration goes beyond conversational windows, making AI aware of the software context and enhancing productivity. The Future of AI Interaction Generative AI will likely evolve to become a collaborator in our daily tasks. Tools like Grammarly and Github Copilot already show how AI can assist users in creating and refining content. As our comfort with AI grows, we may see generative AI managing both digital and physical aspects of our lives, augmenting reality and redefining productivity. The evolution of generative AI interactions is repeating the history of human-computer interaction. By creating better experiences that bundle context into simpler interactions, empower user curation, and augment known ecosystems, we can make generative AI more trustworthy, accessible, usable, and beneficial for everyone. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Success Story

Case Study: Healthcare Health Cloud Marketing Cloud Large Childrens Hospital

Large children’s hospital needs a usable data model and enhanced security to deliver excellent patient outcomes. Healthcare Health Cloud Marketing Cloud Large Childrens Hospital. Industry: Healthcare Client is a large children’s hospital with pediatric healthcare offering acute care. Problem: Implemented : Our solution? Results: In order to improve operations, provide physician-facing services, and move data—including PHI and PII—to the cloud, we have assisted healthcare providers in overcoming these obstacles. Salesforce offers all-inclusive solutions specifically designed to meet the demands of payers (insurance companies) and providers (healthcare organizations). Better health outcomes, more operational effectiveness, and increased patient engagement are the goals of these solutions. Salesforce solutions for the health and life sciences are tailored to the particular requirements of the medical industry. Salesforce offers digital transformation technology for health and life sciences industries. If you are considering a Salesforce healthcare implementation, contact Tectonic today. Like2 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com