SORA - gettectonic.com
GPT-o1 GPT5 Review

GPT-o1 GPT5 Review

OpenAI has released its latest model, GPT-5, also known as Project Strawberry or GPT-o1, positioning it as a significant advancement in AI with PhD-level reasoning capabilities. This new series, OpenAI-o1, is designed to enhance problem-solving in fields such as science, coding, and mathematics, and the initial results indicate that it lives up to the anticipation. Key Features of OpenAI-o1 Enhanced Reasoning Capabilities Safety and Alignment Targeted Applications Model Variants Access and Availability The o1 models are available to ChatGPT Plus and Team users, with broader access expected soon for ChatGPT Enterprise users. Developers can access the models through the API, although certain features like function calling are still in development. Free access to o1-mini is expected to be provided in the near future. Reinforcement Learning at the Core The o1 models utilize reinforcement learning to improve their reasoning abilities. This approach focuses on training the models to think more effectively, improving their performance with additional time spent on tasks. OpenAI continues to explore how to scale this approach, though details remain limited. Major Milestones The o1 model has achieved impressive results in several competitive benchmarks: Chain of Thought Reasoning OpenAI’s o1 models employ the “Chain of Thought” prompt engineering technique, which allows the model to think through problems step by step. This method helps the model approach complex problems in a structured way, similar to human reasoning. Key aspects include: While the o1 models show immense promise, there are still some limitations, which have been covered in detail elsewhere. However, based on early tests, the model is performing impressively, and users are hopeful that these capabilities are as robust as advertised, rather than overhyped like previous projects such as SORA or SearchGPT by OpenAI. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More

Train Your Own SORA Model

Unveiling the Vision Transformer: A Leap in Video Generation The closest open-source model to SORA is Latte, which uses the same Vision Transformer architecture. So, what makes the Vision Transformer so outstanding, and how does it differ from previous methods? You can Train Your Own SORA Model. Latte hasn’t open-sourced its text-to-video training code. We’ve replicated this code from the paper and made it available for anyone to use in training their own SORA alternative model. Let’s discuss how effective our training was. From 3D U-Net to Vision Transformer Image generation has advanced significantly, with the U-Net model structure being the most commonly used: If you’re confused about the network structures, remember the key principle of deep learning: “Just Add More Layers!” Vision Transformer: A Game Changer In 3D U-Net, the transformer can only function within the U-Net, limiting its view. The Vision Transformer, however, enables transformers to globally manage video generation. Training Your Open-Source SORA Alternative with Latte Latte uses the video slicing sequence and Vision Transformer method discussed. While Latte hasn’t open-sourced its text-to-video model training code, we’ve replicated it here: GitHub Repo. Training involves three steps: For more details, see the GitHub repo. They’ve also made improvements to the training process: Model Performance The official Latte video shows impressive performance, especially in handling significant motion. However, our own tests indicate that while Latte performs well, it isn’t the top-performing model. Other open-source models have shown better performance. We will continue to share information on models with better performance, so stay tuned to Tectonic’s Insights. Hardware Requirements Due to its large scale, training Latte requires an A100 or H100 with 80GB of memory. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
tectonic logo

AI Large Language Models

What Exactly Constitutes a Large Language Model? Picture having an exceptionally intelligent digital assistant that extensively combs through text, encompassing books, articles, websites, and various written content up to the year 2021. Yet, unlike a library that houses entire books, this digital assistant processes patterns from the textual data it undergoes. This digital assistant, akin to a large language model (LLM), represents an advanced computer model tailored to comprehend and generate text with humanlike qualities. Its training involves exposure to vast amounts of text data, allowing it to discern patterns, language structures, and relationships between words and sentences. How Do These Large Language Models Operate? Fundamentally, large language models, exemplified by GPT-3, undertake predictions on a token-by-token basis, sequentially building a coherent sequence. Given a request, they strive to predict the subsequent token, utilizing their acquired knowledge of patterns during training. These models showcase remarkable pattern recognition, generating contextually relevant content across diverse topics. The “large” aspect of these models refers to their extensive size and complexity, necessitating substantial computational resources like powerful servers equipped with multiple processors and ample memory. This capability enables the model to manage and process vast datasets, enhancing its proficiency in comprehending and generating high-quality text. While the sizes of LLMs may vary, they typically house billions of parameters—variables learned during the training process, embodying the knowledge extracted from the data. The greater the number of parameters, the more adept the model becomes at capturing intricate patterns. For instance, GPT-3 boasts around 175 billion parameters, marking a significant advancement in language processing capabilities, while GPT-4 is purported to exceed 1 trillion parameters. While these numerical feats are impressive, the challenges associated with these mammoth models include resource-intensive training, environmental implications, potential biases, and more. Large language models serve as virtual assistants with profound knowledge, aiding in a spectrum of language-related tasks. They contribute to writing, offer information, provide creative suggestions, and engage in conversations, aiming to make human-technology interactions more natural. However, users should be cognizant of their limitations and regard them as tools rather than infallible sources of truth. What Constitutes the Training of Large Language Models? Training a large language model is analogous to instructing a robot in comprehending and utilizing human language. The process involves: Fine-Tuning: A Closer Look Fine-tuning involves further training a pre-trained model on a more specific and compact dataset than the original. It is akin to training a robot proficient in various cuisines to specialize in Italian dishes using a dedicated cookbook. The significance of fine-tuning lies in: Versioning and Progression Large language models evolve through versions, with changes in size, training data, or parameters. Each iteration aims to address weaknesses, handle a broader task spectrum, or minimize biases and errors. The progression is simplified as follows: In essence, large language model versions emulate successive editions of a book series, each release striving for refinement, expansiveness, and captivating capabilities. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com