Technology Archives - gettectonic.com - Page 4
healthcare Can prioritize ai governance

Salesforce Data Governance

Salesforce Data Governance Best Practices Salesforce provides a centralized platform for managing customer relationships, but without proper data governance, the system can quickly become unmanageable. Data governance ensures the accuracy, security, and usability of the vast amounts of information collected, helping teams make better decisions and maximizing the value of Salesforce investments. By establishing robust processes and policies, organizations can maintain clean, compliant, and reliable data. Here’s an overview of data governance in Salesforce, its importance, and strategies to implement it effectively. What Is Data Governance in Salesforce? Data governance in Salesforce refers to the practices that monitor and manage data accuracy, security, and compliance. Proper governance ensures your Salesforce data remains trustworthy and actionable, avoiding issues like errors, duplicates, and regulatory violations. Key Components of Salesforce Data Governance: Strong governance enables organizations to make informed decisions and unlock Salesforce’s full potential. The Impact of Data Governance on Decision-Making Accurate and well-governed data empowers leaders to make strategic, data-driven decisions. With clean and current records, organizations can: Good governance ensures data integrity, leading to smarter decisions and improved business performance. Principles of Effective Salesforce Data Governance Building a strong data governance framework starts with these core principles: 1. Data Ownership Assign clear ownership of datasets to specific individuals, teams, or departments. Owners are accountable for maintaining data quality, ensuring compliance, and resolving issues efficiently. Benefits include: 2. Monitoring and Compliance Conduct regular audits to ensure data accuracy, detect unauthorized access, and maintain compliance with regulations. Tools like Salesforce’s built-in monitoring features or third-party solutions (e.g., Validity DemandTools) can streamline this process. Audit checks should include: Consistent monitoring safeguards sensitive data and avoids costly fines, particularly in heavily regulated industries like healthcare and finance. Steps to Develop a Data Governance Strategy Techniques for Maintaining High-Quality Data High-quality data is the backbone of Salesforce governance. Apply these techniques to ensure your data meets quality standards: Standardizing Data for Better Governance Data standardization ensures consistency across Salesforce records, improving analysis and operational efficiency. Examples include: Leveraging Data Management Tools Data management tools are essential for maintaining data integrity and enhancing governance. Benefits include: By integrating these tools into your Salesforce processes, you can establish a solid foundation for data governance while boosting operational efficiency. Final Thoughts Effective data governance in Salesforce is critical for maintaining data quality, ensuring compliance, and empowering teams to make strategic decisions. By following best practices and leveraging the right tools, organizations can maximize the value of their Salesforce investment and drive long-term success. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Value-Based Care Technologies

Value-Based Care Technologies

Essential Technologies for Value-Based Care Success As healthcare providers increasingly adopt value-based care, they must invest in the right technologies and resources to succeed in this model, which incentivizes high-quality, cost-effective care. Value-Based Care Technologies tie reimbursement to care quality, making providers accountable for patient outcomes while providing resources to enhance care. As of 2021, nearly 60% of healthcare payments were already tied to value-based models, according to the Health Care Payment Learning and Action Network (HCP LAN). While partnerships can initiate value-based care, providers must invest in the right technology to fully achieve the intended outcomes. Health Information Exchange (HIE) A robust health information exchange (HIE) is fundamental to value-based care, as it enables providers and payers to access high-quality data seamlessly. HIE allows healthcare professionals to share patients’ medical information electronically across organizations, promoting care coordination by giving providers a comprehensive view of patient needs. For patients, HIE enables more informed involvement in their care by making their health data accessible across specialists, labs, and pharmacies. While joining an HIE may involve new technology investments and workflow adjustments, it ultimately enhances provider access to critical health data. Population Health Management Tools Population health management tools help providers assess health outcomes within groups rather than focusing on individuals alone. These tools aggregate and analyze data, allowing practices to identify high-risk patients and create targeted interventions. This not only enhances health outcomes but can also reduce costs by avoiding expensive treatments. Patient engagement tools, such as telehealth and remote patient monitoring, are essential in population health management, especially for monitoring high-risk patients when in-person care is not feasible. Digital surveys integrated within patient portals can provide insights into social determinants of health, adding a broader context to patient needs. Data Analytics Data analytics transform healthcare data into actionable insights across four types: descriptive, diagnostic, predictive, and prescriptive. Providers can use these analytics to reduce hospital readmissions, predict diseases, and identify chronic illnesses. Data integration and risk stratification capabilities are especially valuable in value-based care, enabling providers to track patient health outcomes effectively and prioritize high-risk cases. Artificial Intelligence & Machine Learning AI and machine learning support many data analytics functions, helping identify patient needs and easing administrative burdens. Given staffing shortages and burnout—reported by 63% of physicians in 2021, according to the American Medical Association (AMA)—AI can automate tasks like documentation, charting, and scheduling, allowing providers to focus more on patient care. Additionally, AI-driven automation in revenue cycle management tasks, such as billing and coding, can reduce the administrative workload associated with value-based care. Price Transparency Technology Price transparency empowers patients to seek cost-effective care, a core principle of value-based models. When providers comply with transparency regulations, patients can better understand their costs and make informed decisions. For providers, leveraging price transparency tools ensures compliance and facilitates partnerships with payers by enabling more effective negotiation, which supports the overall goals of value-based care. As healthcare continues shifting to value-based models, investing in these technologies is critical for providers aiming for long-term success. While these tools rdo equire substantial investment, they are essential for improving patient outcomes, optimizing care quality, and ensuring sustainability in value-based care. When evaluating and choosing healthcare technology tools, contact Tectonic for help. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Adoption Not Even Across the Board

Keeping People at the Core of AI

Successfully adopting AI requires thoughtful planning and a focus on human impact. While the pressure to leverage AI is immense across industries, the path to transforming its potential into meaningful outcomes is less clear. Businesses must address critical questions: What impact do we aim to achieve? Are we prepared for the organizational changes AI will bring? Mark Wakelin, Executive Vice President of Global Professional Services at Salesforce, emphasizes the importance of understanding the “why” behind adopting AI. “You need a clear vision of the impact you want to have and the use cases you’ll deploy,” he explains. A Readiness Checklist Before diving into AI initiatives, organizations must evaluate their readiness. This involves: “This isn’t just a technology equation,” Wakelin notes. “AI is also a legal, ethical, and humanitarian equation. It has the potential to significantly impact humanity, and we need to approach it within the context of workforce operations.” Linking AI to Business Value A common mistake in AI strategies is failing to align initiatives with tangible business outcomes. Wakelin recalls an engineer boasting about processing billions of images with AI but unable to articulate its business application. Companies must start by identifying where AI can have the greatest impact: Trust as the Foundation For AI to succeed, trust must be at the core of its implementation. This includes: “Trust is earned through predictable, integrity-driven behaviors,” says Wakelin. Unlike humans, machines lack relationships, so fostering trust within the ecosystem is crucial. Starting with People AI strategies should prioritize people, not technology. Wakelin stresses the need for transparency and proactive communication about AI implementation. This includes clear plans for: Partnering for Success Salesforce Partner Services supports organizations through this journey by: Reach out to Tectonic today to road map AI adoption for your organization. These steps help customers adopt AI thoughtfully, balancing opportunities with risks, and ensuring initiatives are controlled and trust-driven. A Vision for AI’s Future “AI is the most exciting development of my 35-year career,” Wakelin shares. He envisions AI enhancing productivity, education, and work-life balance while fostering diversity and equity. In the coming years, AI holds the promise of significantly improving society—provided organizations keep people at the center of its evolution. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
GoTo Adds AI Integration

GoTo Adds AI Integration

GoTo Adds AI-Powered Integrations to GoTo Connect for Enhanced CRM Connectivity GoTo has introduced advanced AI-driven integrations between its GoTo Connect platform and major CRM systems to deliver seamless connectivity and improve customer experience (CX) across various channels. GoTo Connect’s newly integrated CRM platforms include Salesforce, HubSpot, Zoho, ServiceNow, MS Dynamics, Freshdesk, Zendesk, and more, enabling businesses to manage customer interactions more effectively. Enhanced Customer Relationship Management Olga Lagunova, Chief Product and Technology Officer at GoTo, emphasized the impact of these integrations on customer relationships:“Working across multiple systems can be inefficient and time-consuming, detracting from valuable customer service time. Our new GoTo Connect integrations enhance how businesses interact with customers by centralizing workflows within the platform,” Lagunova noted. “Our AI capabilities, like call summaries and recordings stored directly in CRMs, empower teams to work smarter within their preferred tools.” New AI-Driven Features With this update, GoTo Connect automatically generates and stores AI-based call summaries and transcriptions within CRM contact records. This streamlined process gives teams faster access to comprehensive customer profiles, reducing manual tasks and increasing efficiency. The system also stores call and message details automatically in the CRM, maintaining a full history of interactions to support a seamless customer journey. A recent Zendesk study cited by GoTo revealed that over 70% of customers are frustrated by needing to repeat information to different service agents. GoTo Connect addresses this by providing agents with a unified view of customer data and current conversations, helping reduce silos and improve service quality. Streamlined Workflows and Insights Beyond call summaries, GoTo Connect’s integration offers screen pop-ups displaying customer details for agents, contact syncing, click-to-call features, call and messaging logs, and voicemail transcriptions. These features help teams respond more promptly and accurately to customer inquiries. Expanding on GoTo Connect CX In related news, GoTo recently launched GoTo Connect CX, combining its virtual phone system with AI-powered tools to create enhanced, efficient CX solutions for businesses of all sizes, while reducing operational costs. The new integrations and GoTo Connect CX are now available to all GoTo Connect customers, reflecting GoTo’s commitment to unifying customer service tools for a better, more connected experience. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Inference vs. Training

AI Inference vs. Training

AI Inference vs. Training: Key Differences and Tradeoffs AI training and inference are the foundational phases of machine learning, each with distinct objectives and resource demands. Optimizing the balance between the two is crucial for managing costs, scaling models, and ensuring peak performance. Here’s a closer look at their roles, differences, and the tradeoffs involved. Understanding Training and Inference Key Differences Between Training and Inference 1. Compute Costs 2. Resource and Latency Considerations Strategic Tradeoffs Between Training and Inference Key Considerations for Balancing Training and Inference As AI technology evolves, hardware advancements may narrow the gap in resource requirements between training and inference. Nonetheless, the key to effective machine learning systems lies in strategically balancing the demands of both processes to meet specific goals and constraints. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI Productivity Paradox

AI Productivity Paradox

The AI Productivity Paradox: Why Aren’t More Workers Using AI Tooks Like ChatGPT?The Real Barrier Isn’t Technical Skills — It’s Time to Think Despite the transformative potential of tools like ChatGPT, most knowledge workers aren’t utilizing them effectively. Those who do tend to use them for basic tasks like summarization. Less than 5% of ChatGPT’s user base subscribes to the paid Plus version, indicating that a small fraction of potential professional users are tapping into AI for more complex, high-value tasks. Having spent over a decade building AI products at companies such as Google Brain and Shopify Ads, the evolution of AI has been clearly evident. With the advent of ChatGPT, AI has transitioned from being an enhancement for tools like photo organizers to becoming a significant productivity booster for all knowledge workers. Most executives are aware that today’s buzz around AI is more than just hype. They’re eager to make their companies AI-forward, recognizing that it’s now more powerful and user-friendly than ever. Yet, despite this potential and enthusiasm, widespread adoption remains slow. The real issue lies in how organizations approach work itself. Systemic problems are hindering the integration of these tools into the daily workflow. Ultimately, the question executives need to ask isn’t, “How can we use AI to work faster? Or can this feature be built with AI?” but rather, “How can we use AI to create more value? What are the questions we should be asking but aren’t?” Real-world ImpactRecently, large language models (LLMs)—the technology behind tools like ChatGPT—were used to tackle a complex data structuring and analysis task. This task would typically require a cross-functional team of data analysts and content designers, taking a month or more to complete. Here’s what was accomplished in just one day using Google AI Studio: However, the process wasn’t just about pressing a button and letting AI do all the work. It required focused effort, detailed instructions, and multiple iterations. Hours were spent crafting precise prompts, providing feedback, and redirecting the AI when it went off course. In this case, the task was compressed from a month-long process to a single day. While it was mentally exhausting, the result wasn’t just a faster process—it was a fundamentally better and different outcome. The LLMs uncovered nuanced patterns and edge cases within the data that traditional analysis would have missed. The Counterintuitive TruthHere lies the key to understanding the AI productivity paradox: The success in using AI was possible because leadership allowed for a full day dedicated to rethinking data processes with AI as a thought partner. This provided the space for deep, strategic thinking, exploring connections and possibilities that would typically take weeks. However, this quality-focused work is often sacrificed under the pressure to meet deadlines. Ironically, most people don’t have time to figure out how they could save time. This lack of dedicated time for exploration is a luxury many product managers (PMs) can’t afford. Under constant pressure to deliver immediate results, many PMs don’t have even an hour for strategic thinking. For many, the only way to carve out time for this work is by pretending to be sick. This continuous pressure also hinders AI adoption. Developing thorough testing plans or proactively addressing AI-related issues is viewed as a luxury, not a necessity. This creates a counterproductive dynamic: Why use AI to spot issues in documentation if fixing them would delay launch? Why conduct further user research when the direction has already been set from above? Charting a New Course — Investing in PeopleProviding employees time to “figure out AI” isn’t enough; most need training to fully understand how to leverage ChatGPT beyond simple tasks like summarization. Yet the training required is often far less than what people expect. While the market is flooded with AI training programs, many aren’t suitable for most employees. These programs are often time-consuming, overly technical, and not tailored to specific job functions. The best results come from working closely with individuals for brief periods—10 to 15 minutes—to audit their current workflows and identify areas where LLMs could be used to streamline processes. Understanding the technical details behind token prediction isn’t necessary to create effective prompts. It’s also a myth that AI adoption is only for those with technical backgrounds under 40. In fact, attention to detail and a passion for quality work are far better indicators of success. By setting aside biases, companies may discover hidden AI enthusiasts within their ranks. For example, a lawyer in his sixties, after just five minutes of explanation, grasped the potential of LLMs. By tailoring examples to his domain, the technology helped him draft a law review article he had been putting off for months. It’s likely that many companies already have AI enthusiasts—individuals who’ve taken the initiative to explore LLMs in their work. These “LLM whisperers” could come from any department: engineering, marketing, data science, product management, or customer service. By identifying these internal innovators, organizations can leverage their expertise. Once these experts are found, they can conduct “AI audits” of current workflows, identify areas for improvement, and provide starter prompts for specific use cases. These internal experts often better understand the company’s systems and goals, making them more capable of spotting relevant opportunities. Ensuring Time for ExplorationBeyond providing training, it’s crucial that employees have the time to explore and experiment with AI tools. Companies can’t simply tell their employees to innovate with AI while demanding that another month’s worth of features be delivered by Friday at 5 p.m. Ensuring teams have a few hours a month for exploration is essential for fostering true AI adoption. Once the initial hurdle of adoption is overcome, employees will be able to identify the most promising areas for AI investment. From there, organizations will be better positioned to assess the need for more specialized training. ConclusionThe AI productivity paradox is not about the complexity of the technology but rather how organizations approach work and innovation. Harnessing AI’s potential is simpler than “AI influencers” often suggest, requiring only

Read More
How Does Salesforce Use AI

How Does Salesforce Use AI

With all the buzz in the news about AI, it may feel like AI is everywhere. In fact, as of 2023, over 80% of global companies report adopting AI to enhance their business operations. This means if your company isn’t yet leveraging AI to strengthen customer relationships, you risk falling behind. The good news is that Salesforce CRM already comes with a suite of AI tools ready for use. In this insight, we’ll explore how combining quality data, AI, and Salesforce can help you build more meaningful, lasting relationships with your customers. How Does Salesforce Use AI? Salesforce offers various built-in functionalities to create customizable, predictive, and generative AI experiences tailored to your business needs. One standout tool is Agentforce, which enables the creation of autonomous AI agents. If you have numerous routine tasks but limited staff, Agentforce could be the solution. For instance, if you lack an in-house customer support agent, Agentforce can build an AI service agent to handle incoming cases, responding intuitively in real-time. Not enough sales reps? No problem—create an AI sales agent to manage records, interact with leads, answer questions, and schedule meetings. Another significant AI feature is generative AI in Salesforce. According to KPMG, 77% of executives believe generative AI will have a more profound societal impact in the next three to five years than any other emerging technology. So, how can it improve your business? Salesforce’s in-house LLM, xGen, helps you generate human-like text and create original visual content from existing data or user input. This capability can enhance user experiences by automating the generation of dynamic and personalized imagery for applications. Generative AI also transforms how users interact with and consume data. Complex datasets can now be converted into easily understandable formats—visualizations, charts, or graphs—generated from natural language prompts. These insights make data accessible, enabling users to share knowledge and drive informed decisions. How Can You Use AI to Improve Customer Relationships? AI is reshaping business models, workflows, and customer engagement. By harnessing quality data, AI, and Salesforce, you can enhance how you connect with customers. Here are key ways to leverage this combination for a smarter customer strategy: Challenges You May Encounter on Your AI Journey Adopting AI in Salesforce, especially Einstein AI, offers many benefits, but it also comes with challenges. Here are some factors to consider for a successful rollout: Importance of Data Quality When Using AI Analytics Data quality is essential for AI accuracy and reliability. Poor data can skew predictions and erode user trust. Key factors that contribute to high data quality include: AI can also enhance data quality by automating data validation and cleansing. Machine learning algorithms can detect and address anomalies, duplicate records, and incomplete datasets, improving the reliability of your data over time. The Future of CRM: AI-Driven Customer Engagement and Business Growth Integrating AI into Salesforce is revolutionizing CRM by enabling businesses to engage with customers more intelligently. From automating routine tasks to enhancing decision-making and delivering personalized communication, AI-driven innovations are empowering businesses to build stronger relationships with customers. As AI continues to evolve, those who embrace it will gain a competitive edge and drive long-term growth. The future of CRM is here—and it’s smarter, faster, and more customer-focused than ever. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agent Trends

AI Agent Trends

AI Agents: Key Statistics and Trends for 2025 “The agent revolution is real and as exciting as the cloud, social, and mobile revolutions,” remarked Salesforce Chair and CEO Marc Benioff. “It will provide a level of transformation that we’ve never seen.” With the general availability of Agentforce, the era of AI-powered agents is officially here. These intelligent software agents, designed to perform tasks autonomously or in collaboration with humans, are already transforming businesses by driving efficiency and improving customer outcomes. AI Agents in Action Companies across the globe are leveraging AI agents to achieve remarkable results. For example, Wiley has seen a 40% boost in case resolution rates with Agentforce, far surpassing their previous bot’s performance. Other success stories from Saks and Opentable reinforce the ROI potential of this groundbreaking technology. Salesforce research highlights data from consumers, employees, and business leaders worldwide, demonstrating how AI agents address key pain points while unlocking significant opportunities for enterprises and individuals alike. Why Consumers Need AI Agents Traditional customer service processes often frustrate consumers, leading to inefficiency and dissatisfaction: AI agents are transforming this landscape with immediate, personalized assistance that minimizes wait times and eliminates repeated explanations. Consumer sentiment indicates a growing acceptance of this technology: Why Enterprises Need AI Agents For enterprises, inefficiency is a persistent challenge. Time-consuming administrative tasks often prevent workers from focusing on strategic, customer-centric activities: AI adoption is increasingly a priority for revenue-generating teams, with measurable benefits: Salesforce experts emphasize that while AI has already proven its value in service, sales, marketing, and commerce, the surface of its potential has only just been scratched. The Agent-First Future As organizations adopt an agent-first approach, they unlock opportunities to redefine operations, increase efficiency, and drive innovation: AI agents are not just the future—they’re the present solution to enduring challenges, empowering businesses to meet the demands of a rapidly evolving digital economy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative AI Energy Consumption Rises

AI for the Ho-Ho-Holidays

The Holiday Rush and AI’s Growing Role in Retail The holiday season is approaching quickly, with fewer days between Thanksgiving and Christmas this year than at any time since 2019. This condensed timeline makes Salesforce’s latest State of the Connected Customer report—this year titled State of the AI Connected Customer—particularly timely. The report, based on insights from over 15,000 consumers worldwide, focuses on the growing role of artificial intelligence (AI), specifically AI agents, in transforming customer experiences. With Salesforce’s recent launch of Agentforce, AI agents have taken center stage. According to Michael Affronti, SVP and General Manager of Commerce Cloud at Salesforce, the retail sector is already exploring this technology: “Retailers that we talk to are starting to implement AI agents. Unlike chatbots, AI agents can analyze customer data to make proactive recommendations and even take action. For consumers, AI agents create smoother checkout experiences, streamline returns, and deliver personalized shopping that feels like working with an incredible in-store associate. For retailers, AI agents drive higher margins and customer retention by delivering exceptional service. As we like to say, ‘There’s an agent for that.’” Rebuilding Trust with AI One of the most compelling use cases for AI agents, according to Affronti, lies in addressing declining consumer trust. Salesforce’s research highlights alarming trends: AI agents present an opportunity to rebuild trust by delivering reliable and transparent experiences. While consumer expectations for personalized service remain high, Salesforce data suggests that 30% of consumers would work with AI agents if it meant faster service. However, skepticism persists—curiosity is the top emotion associated with AI, followed closely by suspicion and anxiety. Transparency is crucial, as 40% of consumers are more likely to trust AI agents when their logic is explained, and there’s an option to escalate to a human. “Most people just want to know it’s AI, and then they’ll be comfortable,” Affronti notes. “Clarity about what the agent is doing, combined with the ability to talk to a real person, builds trust.” Three Opportunities for Retailers Affronti outlines three key strategies for retailers to embrace AI agents effectively this holiday season: Experimentation and Preparing for the Future For retailers not yet leveraging AI, Affronti advises starting small but experimenting now. For example, large brands like Saks are already piloting AI agents such as “Sophie,” which handles tasks like order management and learns new capabilities based on customer feedback. However, smaller businesses can also benefit from AI tools, such as generative AI for writing product descriptions or automating promotions, regardless of scale. “One of the great things about AI today is how democratized it has become,” Affronti explains. “Small businesses using Salesforce’s Commerce Cloud can leverage AI for tasks like creating product descriptions or automating translations, even if their catalog is limited.” Looking Ahead While this holiday season may not see a widespread rollout of AI-driven retail solutions, early adopters are already showcasing what’s possible. Retailers that embrace experimentation and lay the groundwork for AI-powered experiences today will likely see significant results by the 2025 holiday season. The key takeaway: now is the time to build the foundation for the future of AI in retail. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
DHS Introduces AI Framework to Protect Critical Infrastructure

DHS Introduces AI Framework to Protect Critical Infrastructure

The Department of Homeland Security (DHS) has unveiled the Roles and Responsibilities Framework for Artificial Intelligence in Critical Infrastructure, a voluntary set of guidelines designed to ensure the safe and secure deployment of AI across the systems that power daily life. From energy grids to water systems, transportation, and communications, critical infrastructure increasingly relies on AI for enhanced efficiency and resilience. While AI offers transformative potential—such as detecting earthquakes, optimizing energy usage, and streamlining logistics—it also introduces new vulnerabilities. Framework Overview The framework, developed with input from cloud providers, AI developers, critical infrastructure operators, civil society, and public sector organizations, builds on DHS’s broader policies from 2023, which align with White House directives. It aims to provide a shared roadmap for balancing AI’s benefits with its risks. AI Vulnerabilities in Critical Infrastructure The DHS framework categorizes vulnerabilities into three key areas: The guidelines also address sector-specific vulnerabilities and offer strategies to ensure AI strengthens resilience while minimizing misuse risks. Industry and Government Support Arvind Krishna, Chairman and CEO of IBM, lauded the framework as a “powerful tool” for fostering responsible AI development. “We look forward to working with DHS to promote shared and individual responsibilities in advancing trusted AI systems.” Marc Benioff, CEO of Salesforce, emphasized the framework’s role in fostering collaboration among stakeholders while prioritizing trust and accountability. “Salesforce is committed to humans and AI working together to advance critical infrastructure industries in the U.S. We support this framework as a vital step toward shaping the future of AI in a safe and sustainable manner.” DHS Secretary Alejandro N. Mayorkas highlighted the urgency of proactive action. “AI offers a once-in-a-generation opportunity to improve the strength and resilience of U.S. critical infrastructure, and we must seize it while minimizing its potential harms. The framework, if widely adopted, will help ensure the safety and security of critical services.” DHS Recommendations for Stakeholders A Call to Action DHS encourages widespread adoption of the framework to build safer, more resilient critical infrastructure. By prioritizing trust, transparency, and collaboration, this initiative aims to guide the responsible integration of AI into essential systems, ensuring they remain secure and effective as technology continues to evolve. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI platform for automated task management

AI platform for automated task management

Salesforce Doubles Down on AI Innovation with Agentforce Salesforce, renowned for its CRM software used by over 150,000 businesses, including Amazon and Walmart, continues to push the boundaries of innovation. Beyond its flagship CRM, Salesforce also owns Slack, the popular workplace communication app. Now, the company is taking its AI capabilities to the next level with Agentforce—a platform that empowers businesses to build and deploy AI-powered digital agents for automating tasks such as creating sales reports and summarizing Slack conversations. What Problem Does Agentforce Solve? Salesforce has been leveraging AI for years, starting with the launch of Einstein in 2016. Einstein’s initial capabilities were limited to basic, scriptable tasks. However, the rise of generative AI created an opportunity to tackle more complex challenges, enabling tools to make smarter decisions and interpret natural language. This evolution led to a series of innovations—Einstein GPT, Einstein Copilot, and now Agentforce—a flexible platform offering prebuilt and customizable agents designed to meet diverse business needs. “Our customers wanted more. Some wanted to tweak the agents we offer, while others wanted to create their own,” said Tyler Carlson, Salesforce’s VP of Business Development. The Technology Behind Agentforce Agentforce is powered by Salesforce’s Atlas Reasoning Engine, developed in-house to drive smarter decision-making. The platform integrates with AI models from leading providers like OpenAI, Anthropic, Amazon, and Google, offering businesses a variety of tools to choose from. Slack, which Salesforce acquired in 2021, plays a pivotal role as a testing ground for these AI agents. Currently in beta, Agentforce’s Slack integration allows businesses to implement automations directly where employees work, enhancing usability. “Slack makes these tools easy to use and accessible,” Carlson noted. How Agentforce Stands Out Customizing AI for Business Needs With tools like Agentbuilder, businesses can create AI agents tailored to specific tasks. For instance, an agent could prioritize and sort incoming emails, respond to HR inquiries, or handle customer support using internal data. One standout example is Salesforce’s partnership with Workday to develop an AI-powered service agent for employee questions. Driving Results and Adoption Salesforce has already seen promising results from early trials, with Agentforce resolving 90% of customer inquiries autonomously. The company aims to expand adoption and functionality, allowing these agents to handle even larger workloads. “We’re building a bigger ecosystem of partners and skills,” Carlson emphasized. “By next year, we want Agentforce to be a must-have for businesses.” With Agentforce, Salesforce continues to cement its role as a leader in AI innovation, helping businesses work smarter, faster, and more effectively. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
NetSuite Salesforce Collaboration

NetSuite Salesforce Collaboration

NetSuite Bets on Strategic Growth and Embraces Collaboration with Salesforce Growing on All Fronts At SuiteWorld 2024, the theme, “All Systems Grow,” reflected a pivotal moment for NetSuite. While the event lacked groundbreaking announcements, it showcased a fulfillment of past promises and a notable strategic shift toward openness and collaboration. Oracle and NetSuite are now welcoming competitors as partners, signaling a move toward interoperability that could redefine their market positioning. With over 40,000 customers, NetSuite continues its strong growth in the ERP space, particularly among SMBs. The company’s Q3 sales surged 20% year-over-year, underlining its momentum in the mid-market. Beyond traditional ERP capabilities, NetSuite’s expanded suite of solutions positions it as more than just an ERP provider. Delivering on AI Innovations While there were no splashy acquisitions, NetSuite made significant strides by rolling out 170 new modules and features, many leveraging AI. These enhancements blend predictive AI and generative AI to increase accuracy and user productivity. These updates aim to elevate both the platform’s quality and the efficiency of its users. Redwood Design: A Transformative User Experience NetSuite is adopting Oracle’s Redwood design language, promising a more intuitive and user-friendly interface. While Redwood is not new, its phased rollout within NetSuite is a significant step forward. Notable Additions: SuiteProcurement and Salesforce Integration SuiteProcurement: NetSuite’s new procurement automation solution integrates directly with Amazon Business and Staples Business Advantage, automating ordering, invoicing, approvals, and deliveries. Plans are underway to expand vendor support, offering broader applicability in the future. Salesforce Partnership: NetSuite’s most significant announcement was its strategic partnership with Salesforce, enabling real-time data exchange between the platforms. Evan Goldberg, NetSuite’s founder and EVP, explained the rationale:“It’s up to the customer to decide what software they want to use.” The partnership reflects NetSuite’s commitment to addressing customer needs, with more SaaS integrations expected in the future. Expanding Field Service Management (FSM) NetSuite’s Field Service Management (FSM) capabilities, acquired last year, are now better integrated into its platform. While development progress has been slower than anticipated, significant enhancements are expected in the coming year, leveraging Oracle technology to extend FSM’s functionality across industries. And Field Service Management is available in Salesforce, as well. Positioned for Continued SMB Growth NetSuite’s investments are yielding results, as demonstrated by its rapid growth and deeper integration of Oracle technology. The NetSuite Analytics Data Warehouse and Enterprise Performance Management are driving adoption among existing users, showcasing the platform’s scalability. NetSuite’s ability to quickly integrate Oracle updates into its infrastructure gives it a competitive edge, ensuring customers benefit from the latest innovations without delays. With its robust feature set, AI-powered tools, and strategic partnerships like the one with Salesforce, NetSuite has strengthened its position as a go-to ERP platform for SMBs. Its consistent 20% year-over-year growth indicates a bright future, making it an increasingly attractive option for mid-market businesses. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Where LLMs Fall Short

LLM Economies

Throughout history, disruptive technologies have been the catalyst for major social and economic revolutions. The invention of the plow and irrigation systems 12,000 years ago sparked the Agricultural Revolution, while Johannes Gutenberg’s 15th-century printing press fueled the Protestant Reformation and helped propel Europe out of the Middle Ages into the Renaissance. In the 18th century, James Watt’s steam engine ushered in the Industrial Revolution. More recently, the internet has revolutionized communication, commerce, and information access, shrinking the world into a global village. Similarly, smartphones have transformed how people interact with their surroundings. Now, we stand at the dawn of the AI revolution. Large Language Models (LLMs) represent a monumental leap forward, with significant economic implications at both macro and micro levels. These models are reshaping global markets, driving new forms of currency, and creating a novel economic landscape. The reason LLMs are transforming industries and redefining economies is simple: they automate both routine and complex tasks that traditionally require human intelligence. They enhance decision-making processes, boost productivity, and facilitate cost reductions across various sectors. This enables organizations to allocate human resources toward more creative and strategic endeavors, resulting in the development of new products and services. From healthcare to finance to customer service, LLMs are creating new markets and driving AI-driven services like content generation and conversational assistants into the mainstream. To truly grasp the engine driving this new global economy, it’s essential to understand the inner workings of this disruptive technology. These posts will provide both a macro-level overview of the economic forces at play and a deep dive into the technical mechanics of LLMs, equipping you with a comprehensive understanding of the revolution happening now. Why Now? The Connection Between Language and Human Intelligence AI did not begin with ChatGPT’s arrival in November 2022. Many people were developing machine learning classification models in 1999, and the roots of AI go back even further. Artificial Intelligence was formally born in 1950, when Alan Turing—considered the father of theoretical computer science and famed for cracking the Nazi Enigma code during World War II—created the first formal definition of intelligence. This definition, known as the Turing Test, demonstrated the potential for machines to exhibit human-like intelligence through natural language conversations. The test involves a human evaluator who engages in conversations with both a human and a machine. If the evaluator cannot reliably distinguish between the two, the machine is considered to have passed the test. Remarkably, after 72 years of gradual AI development, ChatGPT simulated this very interaction, passing the Turing Test and igniting the current AI explosion. But why is language so closely tied to human intelligence, rather than, for example, vision? While 70% of our brain’s neurons are devoted to vision, OpenAI’s pioneering image generation model, DALL-E, did not trigger the same level of excitement as ChatGPT. The answer lies in the profound role language has played in human evolution. The Evolution of Language The development of language was the turning point in humanity’s rise to dominance on Earth. As Yuval Noah Harari points out in his book Sapiens: A Brief History of Humankind, it was the ability to gossip and discuss abstract concepts that set humans apart from other species. Complex communication, such as gossip, requires a shared, sophisticated language. Human language evolved from primitive cave signs to structured alphabets, which, along with grammar rules, created languages capable of expressing thousands of words. In today’s digital age, language has further evolved with the inclusion of emojis, and now with the advent of GenAI, tokens have become the latest cornerstone in this progression. These shifts highlight the extraordinary journey of human language, from simple symbols to intricate digital representations. In the next post, we will explore the intricacies of LLMs, focusing specifically on tokens. But before that, let’s delve into the economic forces shaping the LLM-driven world. The Forces Shaping the LLM Economy AI Giants in Competition Karl Marx and Friedrich Engels argued that those who control the means of production hold power. The tech giants of today understand that AI is the future means of production, and the race to dominate the LLM market is well underway. This competition is fierce, with industry leaders like OpenAI, Google, Microsoft, and Facebook battling for supremacy. New challengers such as Mistral (France), AI21 (Israel), and Elon Musk’s xAI and Anthropic are also entering the fray. The LLM industry is expanding exponentially, with billions of dollars of investment pouring in. For example, Anthropic has raised $4.5 billion from 43 investors, including major players like Amazon, Google, and Microsoft. The Scarcity of GPUs Just as Bitcoin mining requires vast computational resources, training LLMs demands immense computing power, driving a search for new energy sources. Microsoft’s recent investment in nuclear energy underscores this urgency. At the heart of LLM technology are Graphics Processing Units (GPUs), essential for powering deep neural networks. These GPUs have become scarce and expensive, adding to the competitive tension. Tokens: The New Currency of the LLM Economy Tokens are the currency driving the emerging AI economy. Just as money facilitates transactions in traditional markets, tokens are the foundation of LLM economics. But what exactly are tokens? Tokens are the basic units of text that LLMs process. They can be single characters, parts of words, or entire words. For example, the word “Oscar” might be split into two tokens, “os” and “car.” The performance of LLMs—quality, speed, and cost—hinges on how efficiently they generate these tokens. LLM providers price their services based on token usage, with different rates for input (prompt) and output (completion) tokens. As companies rely more on LLMs, especially for complex tasks like agentic applications, token usage will significantly impact operational costs. With fierce competition and the rise of open-source models like Llama-3.1, the cost of tokens is rapidly decreasing. For instance, OpenAI reduced its GPT-4 pricing by about 80% over the past year and a half. This trend enables companies to expand their portfolio of AI-powered products, further fueling the LLM economy. Context Windows: Expanding Capabilities

Read More
RAGate

RAGate

RAGate: Revolutionizing Conversational AI with Adaptive Retrieval-Augmented Generation Building Conversational AI systems is challenging.It’s not just feasible; it’s complex, resource-intensive, and time-consuming. The difficulty lies in creating systems that can not only understand and generate human-like responses but also adapt effectively to conversational nuances, ensuring meaningful engagement with users. Retrieval-Augmented Generation (RAG) has already transformed Conversational AI by combining the internal knowledge of large language models (LLMs) with external knowledge sources. By leveraging RAG with business data, organizations empower their customers to ask natural language questions and receive insightful, data-driven answers. The challenge?Not every query requires external knowledge. Over-reliance on external sources can disrupt conversational flow, much like consulting a book for every question during a conversation—even when internal knowledge is sufficient. Worse, if no external knowledge is available, the system may respond with “I don’t know,” despite having relevant internal knowledge to answer. The solution?RAGate — an adaptive mechanism that dynamically determines when to use external knowledge and when to rely on internal insights. Developed by Xi Wang, Procheta Sen, Ruizhe Li, and Emine Yilmaz and introduced in their July 2024 paper on Adaptive Retrieval-Augmented Generation for Conversational Systems, RAGate addresses this balance with precision. What Is Conversational AI? At its core, conversation involves exchanging thoughts, emotions, and information, guided by tone, context, and subtle cues. Humans excel at this due to emotional intelligence, socialization, and cultural exposure. Conversational AI aims to replicate these human-like interactions by leveraging technology to generate natural, contextually appropriate, and engaging responses. These systems adapt fluidly to user inputs, making the interaction dynamic—like conversing with a human. Internal vs. External Knowledge in AI Systems To understand RAGate’s value, we need to differentiate between two key concepts: Limitations of Traditional RAG Systems RAG integrates LLMs’ natural language capabilities with external knowledge retrieval, often guided by “guardrails” to ensure responsible, domain-specific responses. However, strict reliance on external knowledge can lead to: How RAGate Enhances Conversational AI RAGate, or Retrieval-Augmented Generation Gate, adapts dynamically to determine when external knowledge retrieval is necessary. It enhances response quality by intelligently balancing internal and external knowledge, ensuring conversational relevance and efficiency. The mechanism: Traditional RAG vs. RAGate: An Example Scenario: A healthcare chatbot offers advice based on general wellness principles and up-to-date medical research. This adaptive approach improves response accuracy, reduces latency, and enhances the overall conversational experience. RAGate Variants RAGate offers three implementation methods, each tailored to optimize performance: Variant Approach Key Feature RAGate-Prompt Uses natural language prompts to decide when external augmentation is needed. Lightweight and simple to implement. RAGate-PEFT Employs parameter-efficient fine-tuning (e.g., QLoRA) for better decision-making. Fine-tunes the model with minimal resource requirements. RAGate-MHA Leverages multi-head attention to interactively assess context and retrieve external knowledge. Optimized for complex conversational scenarios. RAGate Varients How to Implement RAGate Key Takeaways RAGate represents a breakthrough in Conversational AI, delivering adaptive, contextually relevant, and efficient responses by balancing internal and external knowledge. Its potential spans industries like healthcare, education, finance, and customer support, enhancing decision-making and user engagement. By intelligently combining retrieval-augmented generation with nuanced adaptability, RAGate is set to redefine the way businesses and individuals interact with AI. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more We Are All Cloud Users My old company and several others are concerned about security, and feel more secure with being able to walk down Read more

Read More
gettectonic.com