Google Archives - gettectonic.com - Page 2

Real-World Insights and Applications

Salesforce’s Agentforce empowers businesses to create and deploy custom AI agents tailored to their unique needs. Built on a foundation of flexibility, the platform leverages both Salesforce’s proprietary AI models and third-party models like those from OpenAI, Anthropic, Amazon, and Google. This versatility enables businesses to automate a wide range of tasks, from generating detailed sales reports to summarizing Slack conversations. AI in Action: Real-World Insights and Applications The “CXO AI Playbook” by Business Insider explores how organizations across industries and sizes are adopting AI. Featured companies reveal their challenges, the decision-makers driving AI initiatives, and their strategic goals for the future. Salesforce’s approach with Agentforce aligns with this vision, offering advanced tools to address dynamic business needs and improve operational efficiency. Building on Salesforce’s Legacy of Innovation Salesforce has long been a leader in AI integration. It introduced Einstein in 2016 to handle scripted tasks like predictive analytics. As AI capabilities evolved, Salesforce launched Einstein GPT and later Einstein Copilot, which expanded into decision-making and natural language processing. By early 2024, these advancements culminated in Agentforce—a platform designed to provide customizable, prebuilt AI agents for diverse applications. “We recognized that our customers wanted to extend our AI capabilities or create their own custom agents,” said Tyler Carlson, Salesforce’s VP of Business Development. A Powerful Ecosystem: Agentforce’s Core Features Agentforce is powered by the Atlas Reasoning Engine, Salesforce’s proprietary technology that employs ReAct prompting to enable AI agents to break down problems, refine their responses, and deliver more accurate outcomes. The engine integrates seamlessly with Salesforce’s own large language models (LLMs) and external models, ensuring adaptability and precision. Agentforce also emphasizes strict data privacy and security. For example, data shared with external LLMs is subject to limited retention policies and content filtering to ensure compliance and safety. Key Applications and Use Cases Businesses can leverage tools like Agentbuilder to design and scale AI agents with specific functionalities, such as: Seamless Integration with Slack Currently in beta, Agentforce’s Slack integration brings AI automation directly to the workplace. This allows employee-facing agents to execute tasks and answer queries within the communication tool. “Slack is valuable for employee-facing agents because it makes their capabilities easily accessible,” Carlson explained. Measurable Impact: Driving Success with Agentforce Salesforce measures the success of Agentforce by tracking client outcomes. Early adopters report significant results, such as a 90% resolution rate for customer inquiries managed by AI agents. As adoption grows, Salesforce envisions a robust ecosystem of partners, AI skills, and agent capabilities. “By next year, we foresee thousands of agent skills and topics available to clients, driving broader adoption across our CRM systems and Slack,” Carlson shared. Salesforce’s Agentforce represents the next generation of intelligent business automation, combining advanced AI with seamless integrations to deliver meaningful, measurable outcomes at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Google’s Gemini 1.5 Flash-8B

Google’s Gemini 1.5 Flash-8B

Google’s Gemini 1.5 Flash-8B: A Game-Changer in Speed and Affordability Google’s latest AI model, Gemini 1.5 Flash-8B, has taken the spotlight as the company’s fastest and most cost-effective offering to date. Building on the foundation of the original Flash model, 8B introduces key upgrades in pricing, speed, and rate limits, signaling Google’s intent to dominate the affordable AI model market. What Sets Gemini 1.5 Flash-8B Apart? Google has implemented several enhancements to this lightweight model, informed by “developer feedback and testing the limits of what’s possible,” as highlighted in their announcement. These updates focus on three major areas: 1. Unprecedented Price Reduction The cost of using Flash-8B has been slashed in half compared to its predecessor, making it the most budget-friendly model in its class. This dramatic price drop solidifies Flash-8B as a leading choice for developers seeking an affordable yet reliable AI solution. 2. Enhanced Speed The Flash-8B model is 40% faster than its closest competitor, GPT-4o, according to data from Artificial Analysis. This improvement underscores Google’s focus on speed as a critical feature for developers. Whether working in AI Studio or using the Gemini API, users will notice shorter response times and smoother interactions. 3. Increased Rate Limits Flash-8B doubles the rate limits of its predecessor, allowing for 4,000 requests per minute. This improvement ensures developers and users can handle higher volumes of smaller, faster tasks without bottlenecks, enhancing efficiency in real-time applications. Accessing Flash-8B You can start using Flash-8B today through Google AI Studio or via the Gemini API. AI Studio provides a free testing environment, making it a great starting point before transitioning to API integration for larger-scale projects. Comparing Flash-8B to Other Gemini Models Flash-8B positions itself as a faster, cheaper alternative to high-performance models like Gemini 1.5 Pro. While it doesn’t outperform the Pro model across all benchmarks, it excels in cost efficiency and speed, making it ideal for tasks requiring rapid processing at scale. In benchmark evaluations, Flash-8B surpasses the base Flash model in four key areas, with only marginal decreases in other metrics. For developers prioritizing speed and affordability, Flash-8B offers a compelling balance between performance and cost. Why Flash-8B Matters Gemini 1.5 Flash-8B highlights Google’s commitment to providing accessible AI solutions for developers without compromising on quality. With its reduced costs, faster response times, and higher request limits, Flash-8B is poised to redefine expectations for lightweight AI models, catering to a broad spectrum of applications while maintaining an edge in affordability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
How to Connect Multiple Data Sources in Power BI Desktop

How to Connect Multiple Data Sources in Power BI Desktop

In today’s data-driven world, the ability to analyze diverse data sources can set a business apart. With Power BI Desktop, a Microsoft tool, analysts can seamlessly integrate data from various platforms and transform raw information into actionable insights. For instance, you could combine Excel-based sales figures with financial data from SQL Server and customer information from Salesforce into an interactive report. Mastering these techniques can be easier through structured learning, such as Microsoft Power BI courses, which offer practical insights into leveraging this powerful tool. This guide will help you connect, combine, and visualize multiple data sources in Power BI Desktop to make smarter, data-driven decisions. Why Combine Multiple Data Sources? Organizations often face the challenge of managing data stored across disparate systems. Financial records may reside in SQL Server, sales data in Excel, and customer information in cloud platforms like Salesforce. Insights from these datasets are often hidden unless they are integrated. Using Power BI Desktop, you can load multiple data sources into a unified model, providing a comprehensive view that enables better analysis and decision-making. Getting Started with Power BI Desktop Before integrating datasets, ensure you have Power BI Desktop installed. The tool is available for download from the official Power BI website. Once installed, launch Power BI Desktop to begin connecting your data sources. Step-by-Step Guide 1. Connecting Your First Data Source Follow these steps to connect to your first data source: At this stage, you can use Power Query Editor to clean and transform the data as needed. 2. Adding Additional Data Sources Enhance your report by adding more data sources: For example, you could link an Excel file for sales data, a SQL Server database for product details, and Azure for supplementary information, all within a single report. 3. Combining Data from Multiple Sources To merge data from different sources into a cohesive model: This process creates a unified data model that allows for cross-tabulation and advanced visualizations. 4. Using Power Query Editor for Data Transformation Before combining datasets, you may need to clean and transform the data. Use Power Query Editor to: Access Power Query Editor by selecting Transform Data on the Home tab. 5. Creating Visualizations with Combined Data With your unified data model, you can create compelling visualizations: 6. Refreshing Data Connections Power BI Desktop enables you to refresh data connections effortlessly, ensuring your reports stay updated: Best Practices for Connecting Multiple Data Sources Conclusion Integrating multiple data sources in Power BI Desktop empowers businesses to uncover deep insights and make informed decisions. By following these steps, you can connect, aggregate, and visualize diverse datasets with ease. To further enhance your expertise, explore free resources or consider professional courses to master the versatility of Power BI Desktop—a vital tool for data professionals and business analysts. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Google Gemini 2.0

Google Gemini 2.0

Google Gemini 2.0 Flash: A First Look Google has unveiled an experimental version of Gemini 2.0 Flash, its next-generation large language model (LLM), now accessible to developers via Google AI Studio and the Gemini API. This model builds on the capabilities of its predecessors with improved multimodal features and enhanced support for agentic workflows, positioning it as a major step forward in AI-driven applications. Key Features of Gemini 2.0 Flash Performance and Efficiency According to Google, Gemini 2.0 Flash is twice as fast as Gemini 1.5 while outperforming it on standard benchmarks for AI accuracy. Its efficiency and size make it particularly appealing for real-world applications, as highlighted by David Strauss, CTO of Pantheon: “The emphasis on their Flash model, which is efficient and fast, stands out. Frontier models are great for testing limits but inefficient to run at scale.” Applications and Use Cases Agentic AI and Competitive Edge Gemini 2.0’s standout feature is its agentic AI capabilities, where multiple AI agents collaborate to execute multi-stage workflows. Unlike simpler solutions that link multiple chatbots, Gemini 2.0’s tool-driven, code-based training sets it apart. Chirag Dekate, an analyst at Gartner, notes: “There is a lot of agent-washing in the industry today. Gemini now raises the bar on frontier models that enable native multimodality, extremely large context, and multistage workflow capabilities.” However, challenges remain. As AI systems grow more complex, concerns about security, accuracy, and trust persist. Developers, like Strauss, emphasize the need for human oversight in professional applications: “I would trust an agentic system that formulates prompts into proposed, structured actions, subject to review and approval.” Next Steps and Roadmap Google has not disclosed pricing for Gemini 2.0 Flash, though its free availability is anticipated if it follows the Gemini 1.5 rollout. Looking ahead, Google plans to incorporate the model into its beta-stage AI agents, such as Project Astra, Mariner, and Jules, by 2025. Conclusion With Gemini 2.0 Flash, Google is pushing the boundaries of multimodal and agentic AI. By introducing native tool usage and support for complex workflows, this LLM offers developers a versatile and efficient platform for innovation. As enterprises explore the model’s capabilities, its potential to reshape AI-driven applications in coding, data science, and interactive interfaces is immense—though trust and security considerations remain critical for broader adoption. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Transform Customer Experiences

Transform Customer Experiences

How to Transform Customer Experiences with AI and Sub-Second E2E Real-Time Data Sync Introducing Data Cloud’s Sub-Second E2E Real-Time FeatureDeliver hyper-personalized experiences in real time, no matter how or where customers engage with your brand. Exceptional customer experiences hinge on unifying interactions across every touchpoint. Yet, fragmented data dispersed across systems, channels, and clouds often stands in the way. Salesforce Data Cloud eliminates these silos by delivering a synchronized, real-time customer data ecosystem, enabling brands to create personalized, seamless experiences instantly—regardless of how or where customers connect. We’re excited to announce that the Sub-Second E2E Real-Time feature in Salesforce Data Cloud is now available. This innovation processes and analyzes data as it’s generated, empowering brands to make immediate, data-driven decisions. Combined with Einstein Personalization—which leverages advanced machine learning (ML) and rules-based automation—businesses can deliver individualized experiences across all channels, driving deeper engagement and improved outcomes. What is Sub-Second Real-Time? Sub-second real-time refers to the ability to process and deliver data or responses in less than one second, ensuring ultra-low latency and near-instantaneous results. This capability is critical for applications requiring immediate data updates, such as live analytics, responsive user interfaces, and time-sensitive decision-making. The Sub-Second E2E Real-Time feature empowers industries like fraud detection, predictive maintenance, and real-time marketing with instant insights. By synchronizing data across systems, channels, and clouds, Data Cloud ensures a unified, real-time customer view, giving businesses a competitive edge. Real-World Examples of Sub-Second Real-Time in Action 1. Real-Time Web Personalization Imagine a user browsing a website. As they interact with products, Data Cloud instantly captures this activity and updates their customer profile. Using Einstein Personalization, the system processes this data in milliseconds to tailor their browsing experience. For instance, personalized product recommendations can appear as the user clicks, leveraging insights from their behavior across platforms such as websites, point-of-sale systems, mobile apps, and other data sources. This seamless personalization is made possible by Data Cloud’s integrations, including zero-copy ingestion from major data warehouses like Snowflake, Databricks, and Redshift. The result? A continuously updated, 360-degree customer view that enhances every touchpoint. 2. Real-Time Support with Agentforce Now, consider a customer engaging in a live chat for assistance. As they browse, their actions are captured and updated in real time. When they initiate a chat, whether through Agentforce AI agents or human support, the agent has immediate access to their full activity history, updated within milliseconds. This enables the agent to provide tailored responses and solutions, ensuring a frictionless and engaging customer support experience. Why Sub-Second Real-Time Matters From personalization to support, the Sub-Second E2E Real-Time feature in Data Cloud ensures every customer interaction feels relevant, timely, and connected. By bridging the gap between data silos and intelligent automation, businesses can unlock new opportunities to exceed customer expectations—at scale and in real time. Explore how Salesforce Data Cloud can transform your customer experience today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Agentforce Custom AI Agents

Agentforce Custom AI Agents

Salesforce Introduces Agentforce: A New AI Platform to Build Custom Digital Agents Salesforce has unveiled Agentforce, its latest AI platform designed to help companies build and deploy intelligent digital agents to automate a wide range of tasks. Building on Salesforce’s generative AI advancements, Agentforce integrates seamlessly with its existing tools, enabling businesses to enhance efficiency and decision-making through automation. Agentforce Custom AI Agents. With applications like generating reports from sales data, summarizing Slack conversations, and routing emails to the appropriate departments, Agentforce offers businesses unprecedented flexibility in automating routine processes. The Problem Agentforce Solves Salesforce’s journey in AI began in 2016 with the launch of Einstein, a suite of AI tools for its CRM software. While Einstein automated some tasks, its capabilities were largely predefined and lacked the flexibility to handle complex, dynamic scenarios. The rapid evolution of generative AI opened new doors for improving natural language understanding and decision-making. This led to innovations like Einstein GPT and later Einstein Copilot, which laid the foundation for Agentforce. With Agentforce, businesses can now create prebuilt or fully customizable agents that adapt to unique business needs. Agentforce Custom AI Agents “We recognized that our customers want to extend the agents we provide or build their own,” said Tyler Carlson, Salesforce’s Vice President of Business Development. How Agentforce Works At the heart of Agentforce is the Atlas Reasoning Engine, a proprietary technology developed by Salesforce. It leverages advanced techniques like ReAct prompting, which allows AI agents to break down problems into steps, reason through them, and iteratively refine their actions until they meet user expectations. Key Features: Ensuring Security and Compliance Given the potential risks of integrating third-party LLMs, Salesforce has implemented robust safeguards, including: AI in Action: Real-World Applications One notable use case of Agentforce is its collaboration with Workday to develop an AI Employee Service Agent. This agent helps employees find answers to HR-related questions using a company’s internal policies and documents. Another example involves agents autonomously managing general email inboxes by analyzing message intent and forwarding emails to relevant teams. “These agents are not monolithic or tied to a single LLM,” Carlson explained. “Their versatility lies in combining different models and technologies for better outcomes.” Measuring Success Salesforce gauges Agentforce’s success through client outcomes and platform adoption. For example, some users report that Agentforce resolves up to 90% of customer inquiries autonomously. Looking ahead, Salesforce aims to expand the Agentforce ecosystem significantly. “By next year, we want thousands of agent skills and topics available for customers to leverage,” Carlson added. A Platform for the Future of AI Agentforce represents Salesforce’s vision of creating autonomous AI agents that empower businesses to work smarter, faster, and more efficiently. With tools like Agentbuilder and integrations across its ecosystem, Salesforce is positioning Agentforce as a cornerstone of AI-led innovation, helping businesses stay ahead in a rapidly evolving technological landscape. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI is Revolutionizing Salesforce

AI is Revolutionizing Salesforce

AI is Revolutionizing Salesforce: Transforming Sales Teams in the Era of AI Artificial Intelligence (AI) is reshaping the sales landscape, disrupting traditional processes, and redefining how businesses interact with customers. The rapid adoption of AI-native systems is altering how data is captured, how sales teams engage, and how the entire sales cycle is structured. The shift toward AI-driven solutions is fueling unprecedented opportunities for sales organizations to achieve more by doing less manual work. Success in this transformation will favor those who use AI to make smarter, data-driven decisions, shifting the focus from activities to meaningful achievements. From Rolodex to Real-Time Insights: The Evolution of Sales The history of sales is one of continual evolution. From the bartering days of ancient commerce to the introduction of Rolodexes in the mid-20th century, and later to early CRM tools like Act! and Siebel Systems, the industry has always innovated to meet changing customer needs. Salesforce’s arrival in 1999 brought CRM to the cloud, empowering sales teams with unparalleled accessibility. Yet, all these systems had one thing in common—they relied on human input. Logging calls, updating lead statuses, and noting feedback all depended on sales reps’ diligence. That dependency is now being disrupted by AI, which captures and processes data autonomously. AI-Native Systems: Capturing Context Without Human Input AI-native systems represent a seismic shift. Unlike traditional CRMs, these systems capture data in real-time without relying on human intervention. From emails and Slack messages to Zoom calls and social media interactions, AI aggregates unstructured data into actionable insights. This creates a rich, context-driven record of customer behavior, reducing reliance on manual entry and unlocking deeper understanding. Automating the Mundane: Eliminating Data Entry AI is erasing the inefficiencies of manual processes. Sales development representatives (SDRs) once spent countless hours cold-calling, sending follow-ups, and updating records—a monotonous grind that yielded limited value. Today, AI automates these tasks, enabling SDRs to focus on high-impact activities like relationship-building and deal-closing. This automation, often referred to as intelligent pipeline management, identifies prospects, crafts personalized outreach, and schedules meetings—effortlessly managing the early stages of the sales funnel. AI as a Partner: Voice Agents and Real-Time Coaching AI is not just automating tasks; it’s enhancing human performance. AI-powered voice agents can now assist sales reps during live calls by offering real-time coaching. When a prospect raises an objection, the AI provides instant suggestions based on historical data, empowering salespeople to respond more effectively. This real-time guidance helps sales teams navigate complex conversations with confidence, boosting close rates and accelerating results. Personalization at Scale: Tailored Engagement Across Pipelines Personalization has long been a cornerstone of effective sales, but AI has made it scalable. AI tools analyze customer behaviors and preferences, allowing sales teams to tailor messages, proposals, and outreach at an individual level—even for thousands of prospects. From detecting website visits to auto-generating customized content, AI enables hyper-relevant interactions that build stronger connections with leads and customers. Breaking Down Silos: Unifying Sales, Marketing, and Customer Success AI is bridging organizational divides. Historically, sales, marketing, and customer success operated in silos, each pursuing independent goals. AI aligns these functions around a shared understanding of the customer, fostering collaboration and a unified go-to-market strategy. By consolidating data from every customer touchpoint into a single system of record, AI empowers teams to work together seamlessly, ensuring a consistent and coordinated customer experience. Systems of Record for the AI Age: The Importance of Context Unlike traditional CRMs that rely on structured fields, AI-powered systems excel at capturing unstructured data—conversations, social media mentions, and survey responses. These systems provide the context sales teams need to make better decisions. This rich contextual data benefits not just sales but also product development, marketing, and customer success teams, enabling them to refine strategies and create more responsive organizations. Redefining Metrics: From Activities to Achievements Traditional sales metrics often emphasized activity—calls made, emails sent, meetings booked. AI is shifting the focus to outcomes. By tracking the quality and impact of interactions, rather than the volume, sales leaders can better understand what drives success and optimize their strategies accordingly. The Future of Sales: Empowered by AI AI is not replacing salespeople; it’s empowering them. By automating repetitive tasks and delivering actionable insights, AI frees up teams to focus on building relationships, solving problems, and closing deals. To thrive in this new era, organizations must embrace AI as a core part of their strategy. The question for sales leaders is no longer whether to adopt AI but how quickly they can leverage it to gain a competitive edge. Embrace the future of sales—where intelligent systems drive outcomes, and human ingenuity takes center stage. AI is revolutionizing Salesforce by helping businesses improve customer relationships, streamline operations, and make better decisions: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Ready or Not Here AI Agents Come

Ready or Not Here AI Agents Come

As organizations embrace the growing presence of AI agents, leaders must address concerns about allowing autonomous systems to operate in sensitive environments. AI agents, often viewed as the future of how enterprises deploy large language models, raise important questions around security and identity management. The rise of agentic AI has been notable in 2024, with Google launching its Vertex AI Agents, Salesforce introducing Agentforce, and AWS rolling out the re Agent for Amazon Bedrock. These agents promise to deliver significant value by executing tasks using natural language commands, reasoning through the best solutions, and taking action without human intervention. However, as Katie Norton, research manager for DevSecOps & Software Supply Chain Security at IDC, highlighted at Venafi’s Machine Identity Conference, AI agents present unique security challenges. Unlike robotic process automation (RPA), AI agents act autonomously, creating a need for secure machine identities, especially as they access sensitive data across multiple systems. Matt McLarty, CTO at Boomi, added that the complexity of managing agentic AI revolves around ensuring proper authentication and authorization. He pointed out scenarios where agents dynamically interact with systems, such as opening support tickets, which require secure verification of agent access rights. While these agents offer significant potential, businesses are not yet prepared to issue credentials for autonomous agents, according to McLarty. The current reliance on existing authentication and authorization systems needs to evolve to support these new AI capabilities. He also emphasized the importance of pairing agents with human oversight, ensuring that access and actions are traceable. As AI advances into its third wave, characterized by autonomous agents capable of reasoning and action, companies need to rethink their approaches to workforce collaboration. These agents will handle low-value, time-consuming tasks, while human workers focus on strategic initiatives. In sales, for example, AI agents will manage customer interactions, schedule meetings, and resolve basic issues, allowing salespeople to build deeper relationships. At Dreamforce 2024, Salesforce unveiled Agentforce, a platform that empowers organizations to build and deploy customized AI agents across service, sales, marketing, and commerce. This suite aims to increase efficiency, productivity, and customer satisfaction. However, for AI agents to succeed, they must complement human skills and operate within established guardrails. Organizations need to implement audit trails to ensure accountability and develop training programs for employees to effectively collaborate with AI. Ultimately, the future of work will feature a hybrid workforce where humans and AI agents work together to drive innovation and success. As companies move forward, they must ensure AI agents understand their limits and recognize when human intervention is necessary. This balance between AI-driven efficiency and human oversight will enable businesses to thrive in an ever-evolving landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Productivity Paradox

AI Productivity Paradox

The AI Productivity Paradox: Why Aren’t More Workers Using AI Tooks Like ChatGPT?The Real Barrier Isn’t Technical Skills — It’s Time to Think Despite the transformative potential of tools like ChatGPT, most knowledge workers aren’t utilizing them effectively. Those who do tend to use them for basic tasks like summarization. Less than 5% of ChatGPT’s user base subscribes to the paid Plus version, indicating that a small fraction of potential professional users are tapping into AI for more complex, high-value tasks. Having spent over a decade building AI products at companies such as Google Brain and Shopify Ads, the evolution of AI has been clearly evident. With the advent of ChatGPT, AI has transitioned from being an enhancement for tools like photo organizers to becoming a significant productivity booster for all knowledge workers. Most executives are aware that today’s buzz around AI is more than just hype. They’re eager to make their companies AI-forward, recognizing that it’s now more powerful and user-friendly than ever. Yet, despite this potential and enthusiasm, widespread adoption remains slow. The real issue lies in how organizations approach work itself. Systemic problems are hindering the integration of these tools into the daily workflow. Ultimately, the question executives need to ask isn’t, “How can we use AI to work faster? Or can this feature be built with AI?” but rather, “How can we use AI to create more value? What are the questions we should be asking but aren’t?” Real-world ImpactRecently, large language models (LLMs)—the technology behind tools like ChatGPT—were used to tackle a complex data structuring and analysis task. This task would typically require a cross-functional team of data analysts and content designers, taking a month or more to complete. Here’s what was accomplished in just one day using Google AI Studio: However, the process wasn’t just about pressing a button and letting AI do all the work. It required focused effort, detailed instructions, and multiple iterations. Hours were spent crafting precise prompts, providing feedback, and redirecting the AI when it went off course. In this case, the task was compressed from a month-long process to a single day. While it was mentally exhausting, the result wasn’t just a faster process—it was a fundamentally better and different outcome. The LLMs uncovered nuanced patterns and edge cases within the data that traditional analysis would have missed. The Counterintuitive TruthHere lies the key to understanding the AI productivity paradox: The success in using AI was possible because leadership allowed for a full day dedicated to rethinking data processes with AI as a thought partner. This provided the space for deep, strategic thinking, exploring connections and possibilities that would typically take weeks. However, this quality-focused work is often sacrificed under the pressure to meet deadlines. Ironically, most people don’t have time to figure out how they could save time. This lack of dedicated time for exploration is a luxury many product managers (PMs) can’t afford. Under constant pressure to deliver immediate results, many PMs don’t have even an hour for strategic thinking. For many, the only way to carve out time for this work is by pretending to be sick. This continuous pressure also hinders AI adoption. Developing thorough testing plans or proactively addressing AI-related issues is viewed as a luxury, not a necessity. This creates a counterproductive dynamic: Why use AI to spot issues in documentation if fixing them would delay launch? Why conduct further user research when the direction has already been set from above? Charting a New Course — Investing in PeopleProviding employees time to “figure out AI” isn’t enough; most need training to fully understand how to leverage ChatGPT beyond simple tasks like summarization. Yet the training required is often far less than what people expect. While the market is flooded with AI training programs, many aren’t suitable for most employees. These programs are often time-consuming, overly technical, and not tailored to specific job functions. The best results come from working closely with individuals for brief periods—10 to 15 minutes—to audit their current workflows and identify areas where LLMs could be used to streamline processes. Understanding the technical details behind token prediction isn’t necessary to create effective prompts. It’s also a myth that AI adoption is only for those with technical backgrounds under 40. In fact, attention to detail and a passion for quality work are far better indicators of success. By setting aside biases, companies may discover hidden AI enthusiasts within their ranks. For example, a lawyer in his sixties, after just five minutes of explanation, grasped the potential of LLMs. By tailoring examples to his domain, the technology helped him draft a law review article he had been putting off for months. It’s likely that many companies already have AI enthusiasts—individuals who’ve taken the initiative to explore LLMs in their work. These “LLM whisperers” could come from any department: engineering, marketing, data science, product management, or customer service. By identifying these internal innovators, organizations can leverage their expertise. Once these experts are found, they can conduct “AI audits” of current workflows, identify areas for improvement, and provide starter prompts for specific use cases. These internal experts often better understand the company’s systems and goals, making them more capable of spotting relevant opportunities. Ensuring Time for ExplorationBeyond providing training, it’s crucial that employees have the time to explore and experiment with AI tools. Companies can’t simply tell their employees to innovate with AI while demanding that another month’s worth of features be delivered by Friday at 5 p.m. Ensuring teams have a few hours a month for exploration is essential for fostering true AI adoption. Once the initial hurdle of adoption is overcome, employees will be able to identify the most promising areas for AI investment. From there, organizations will be better positioned to assess the need for more specialized training. ConclusionThe AI productivity paradox is not about the complexity of the technology but rather how organizations approach work and innovation. Harnessing AI’s potential is simpler than “AI influencers” often suggest, requiring only

Read More
AI platform for automated task management

AI platform for automated task management

Salesforce Doubles Down on AI Innovation with Agentforce Salesforce, renowned for its CRM software used by over 150,000 businesses, including Amazon and Walmart, continues to push the boundaries of innovation. Beyond its flagship CRM, Salesforce also owns Slack, the popular workplace communication app. Now, the company is taking its AI capabilities to the next level with Agentforce—a platform that empowers businesses to build and deploy AI-powered digital agents for automating tasks such as creating sales reports and summarizing Slack conversations. What Problem Does Agentforce Solve? Salesforce has been leveraging AI for years, starting with the launch of Einstein in 2016. Einstein’s initial capabilities were limited to basic, scriptable tasks. However, the rise of generative AI created an opportunity to tackle more complex challenges, enabling tools to make smarter decisions and interpret natural language. This evolution led to a series of innovations—Einstein GPT, Einstein Copilot, and now Agentforce—a flexible platform offering prebuilt and customizable agents designed to meet diverse business needs. “Our customers wanted more. Some wanted to tweak the agents we offer, while others wanted to create their own,” said Tyler Carlson, Salesforce’s VP of Business Development. The Technology Behind Agentforce Agentforce is powered by Salesforce’s Atlas Reasoning Engine, developed in-house to drive smarter decision-making. The platform integrates with AI models from leading providers like OpenAI, Anthropic, Amazon, and Google, offering businesses a variety of tools to choose from. Slack, which Salesforce acquired in 2021, plays a pivotal role as a testing ground for these AI agents. Currently in beta, Agentforce’s Slack integration allows businesses to implement automations directly where employees work, enhancing usability. “Slack makes these tools easy to use and accessible,” Carlson noted. How Agentforce Stands Out Customizing AI for Business Needs With tools like Agentbuilder, businesses can create AI agents tailored to specific tasks. For instance, an agent could prioritize and sort incoming emails, respond to HR inquiries, or handle customer support using internal data. One standout example is Salesforce’s partnership with Workday to develop an AI-powered service agent for employee questions. Driving Results and Adoption Salesforce has already seen promising results from early trials, with Agentforce resolving 90% of customer inquiries autonomously. The company aims to expand adoption and functionality, allowing these agents to handle even larger workloads. “We’re building a bigger ecosystem of partners and skills,” Carlson emphasized. “By next year, we want Agentforce to be a must-have for businesses.” With Agentforce, Salesforce continues to cement its role as a leader in AI innovation, helping businesses work smarter, faster, and more effectively. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agent Rivalry

AI Agent Rivalry

Microsoft and Salesforce’s AI Agent Rivalry Heats Up The battle for dominance in the AI agent space has escalated, with Salesforce CEO Marc Benioff intensifying his criticism of Microsoft’s AI solutions. Following remarks at Dreamforce 2024, Benioff took to X (formerly Twitter) to call out Microsoft for what he called “rebranding Copilot as ‘agents’ in panic mode.” The AI Agent rivalry winner may be determined not by flashy features but by delivering tangible, transformative outcomes for businesses navigating the complexities of AI adoption. AI Agent Rivalry. Benioff didn’t hold back, labeling Microsoft’s Copilot as “a flop”, citing issues like data leaks, inaccuracies, and requiring customers to build their own large language models (LLMs). In contrast, he touted Salesforce’s Agentforce as a solution that autonomously drives sales, service, marketing, analytics, and commerce without the complications he attributes to Microsoft’s offerings. Microsoft’s Copilot: A New UI for AI Microsoft recently unveiled new autonomous agent capabilities for Copilot Studio and Dynamics 365, positioning these agents as tools to enhance productivity across teams and functions. CEO Satya Nadella described Copilot as “the UI for AI” and emphasized its flexibility, allowing businesses to create, manage, and integrate agents seamlessly. Despite the fanfare, Benioff dismissed Copilot’s updates, likening it to “Clippy 2.0” and claiming it fails to deliver accuracy or transformational impact. Salesforce Expands Agentforce with Strategic Partnerships At Dreamforce 2024, Salesforce unveiled its Agentforce Partner Network, a global ecosystem featuring collaborators like AWS, Google Cloud, IBM, and Workday. The move aims to bolster the capabilities of Agentforce, Salesforce’s AI-driven platform that delivers tailored, autonomous business solutions. Agentforce allows businesses to deploy customizable agents without complex coding. With features like the Agent Builder, users can craft workflows and instructions in natural language, making the platform accessible to both technical and non-technical teams. Flexibility and Customization: Salesforce vs. Microsoft Both Salesforce and Microsoft emphasize AI’s transformative potential, but their approaches differ: Generative AI vs. Predictive AI Salesforce has doubled down on generative AI, with Einstein GPT producing personalized content using CRM data while also providing predictive analytics to forecast customer behavior and sales outcomes. Microsoft, on the other hand, combines generative and predictive AI across its ecosystem. Copilot not only generates content but also performs autonomous decision-making in Dynamics 365 and Azure, positioning itself as a comprehensive enterprise solution. The Rise of Multi-Agent AI Systems The competition between Microsoft and Salesforce reflects a broader trend in AI-driven automation. Companies like OpenAI are experimenting with frameworks like Swarm, which simplifies the creation of interconnected AI agents for tasks such as lead generation and marketing campaign development. Similarly, startups like DevRev are introducing conversational AI builders to design custom agents, offering enterprises up to 95% task accuracy without the need for coding. What Lies Ahead in the AI Agent Landscape? As Salesforce and Microsoft push the boundaries of AI integration, businesses are evaluating these tools for their flexibility, customization, and impact on operations. While Salesforce leads in CRM-focused AI, Microsoft’s integrated approach appeals to enterprises seeking cross-functional AI solutions. In the end, the winner may be determined not by flashy features but by delivering tangible, transformative outcomes for businesses navigating the complexities of AI adoption. AI Agent Rivalry. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Where LLMs Fall Short

LLM Economies

Throughout history, disruptive technologies have been the catalyst for major social and economic revolutions. The invention of the plow and irrigation systems 12,000 years ago sparked the Agricultural Revolution, while Johannes Gutenberg’s 15th-century printing press fueled the Protestant Reformation and helped propel Europe out of the Middle Ages into the Renaissance. In the 18th century, James Watt’s steam engine ushered in the Industrial Revolution. More recently, the internet has revolutionized communication, commerce, and information access, shrinking the world into a global village. Similarly, smartphones have transformed how people interact with their surroundings. Now, we stand at the dawn of the AI revolution. Large Language Models (LLMs) represent a monumental leap forward, with significant economic implications at both macro and micro levels. These models are reshaping global markets, driving new forms of currency, and creating a novel economic landscape. The reason LLMs are transforming industries and redefining economies is simple: they automate both routine and complex tasks that traditionally require human intelligence. They enhance decision-making processes, boost productivity, and facilitate cost reductions across various sectors. This enables organizations to allocate human resources toward more creative and strategic endeavors, resulting in the development of new products and services. From healthcare to finance to customer service, LLMs are creating new markets and driving AI-driven services like content generation and conversational assistants into the mainstream. To truly grasp the engine driving this new global economy, it’s essential to understand the inner workings of this disruptive technology. These posts will provide both a macro-level overview of the economic forces at play and a deep dive into the technical mechanics of LLMs, equipping you with a comprehensive understanding of the revolution happening now. Why Now? The Connection Between Language and Human Intelligence AI did not begin with ChatGPT’s arrival in November 2022. Many people were developing machine learning classification models in 1999, and the roots of AI go back even further. Artificial Intelligence was formally born in 1950, when Alan Turing—considered the father of theoretical computer science and famed for cracking the Nazi Enigma code during World War II—created the first formal definition of intelligence. This definition, known as the Turing Test, demonstrated the potential for machines to exhibit human-like intelligence through natural language conversations. The test involves a human evaluator who engages in conversations with both a human and a machine. If the evaluator cannot reliably distinguish between the two, the machine is considered to have passed the test. Remarkably, after 72 years of gradual AI development, ChatGPT simulated this very interaction, passing the Turing Test and igniting the current AI explosion. But why is language so closely tied to human intelligence, rather than, for example, vision? While 70% of our brain’s neurons are devoted to vision, OpenAI’s pioneering image generation model, DALL-E, did not trigger the same level of excitement as ChatGPT. The answer lies in the profound role language has played in human evolution. The Evolution of Language The development of language was the turning point in humanity’s rise to dominance on Earth. As Yuval Noah Harari points out in his book Sapiens: A Brief History of Humankind, it was the ability to gossip and discuss abstract concepts that set humans apart from other species. Complex communication, such as gossip, requires a shared, sophisticated language. Human language evolved from primitive cave signs to structured alphabets, which, along with grammar rules, created languages capable of expressing thousands of words. In today’s digital age, language has further evolved with the inclusion of emojis, and now with the advent of GenAI, tokens have become the latest cornerstone in this progression. These shifts highlight the extraordinary journey of human language, from simple symbols to intricate digital representations. In the next post, we will explore the intricacies of LLMs, focusing specifically on tokens. But before that, let’s delve into the economic forces shaping the LLM-driven world. The Forces Shaping the LLM Economy AI Giants in Competition Karl Marx and Friedrich Engels argued that those who control the means of production hold power. The tech giants of today understand that AI is the future means of production, and the race to dominate the LLM market is well underway. This competition is fierce, with industry leaders like OpenAI, Google, Microsoft, and Facebook battling for supremacy. New challengers such as Mistral (France), AI21 (Israel), and Elon Musk’s xAI and Anthropic are also entering the fray. The LLM industry is expanding exponentially, with billions of dollars of investment pouring in. For example, Anthropic has raised $4.5 billion from 43 investors, including major players like Amazon, Google, and Microsoft. The Scarcity of GPUs Just as Bitcoin mining requires vast computational resources, training LLMs demands immense computing power, driving a search for new energy sources. Microsoft’s recent investment in nuclear energy underscores this urgency. At the heart of LLM technology are Graphics Processing Units (GPUs), essential for powering deep neural networks. These GPUs have become scarce and expensive, adding to the competitive tension. Tokens: The New Currency of the LLM Economy Tokens are the currency driving the emerging AI economy. Just as money facilitates transactions in traditional markets, tokens are the foundation of LLM economics. But what exactly are tokens? Tokens are the basic units of text that LLMs process. They can be single characters, parts of words, or entire words. For example, the word “Oscar” might be split into two tokens, “os” and “car.” The performance of LLMs—quality, speed, and cost—hinges on how efficiently they generate these tokens. LLM providers price their services based on token usage, with different rates for input (prompt) and output (completion) tokens. As companies rely more on LLMs, especially for complex tasks like agentic applications, token usage will significantly impact operational costs. With fierce competition and the rise of open-source models like Llama-3.1, the cost of tokens is rapidly decreasing. For instance, OpenAI reduced its GPT-4 pricing by about 80% over the past year and a half. This trend enables companies to expand their portfolio of AI-powered products, further fueling the LLM economy. Context Windows: Expanding Capabilities

Read More
salesforce einstein insights

Salesforce Einstein Conversation Insights

Unlocking Einstein Conversation Insights in Salesforce: Setup, Integration, and Customization In this insight, we’ll guide you through setting up Einstein Conversation Insights in Salesforce, integrating it with platforms like Zoom, managing permissions, and customizing the dataflow schedule for optimal performance. As a marketer from way back when, little gets me as excited about the future of technology than marketing tools that make us smarter and faster. What is Einstein Conversation Insights? Einstein Conversation Insights (ECI) empowers teams to analyze and identify patterns, phrases, and areas of focus within voice and video interactions. By tracking terms and extracting actionable insights, managers and representatives can prioritize follow-ups and improve decision-making through detailed call logs and actionable dashboards. No longer are we hampered by the limitations of written text! Step 1: Enabling Einstein Conversation Insights To begin utilizing Einstein Conversation Insights: Step 2: Assigning Permissions To grant users access to ECI: Step 3: Connecting Recording Providers Voice Recording Providers To analyze call recordings: Video Recording Providers For video analysis, integrate your conferencing platform: Setting Up Zoom Integration To integrate Salesforce with Zoom: Once complete, users will need to link their Zoom accounts individually. A message will confirm successful setup. Click Take me there to finalize the connection. Step 4: Exploring the Conversation Insights App After linking your Zoom account, visit the Conversation Insights App under the Analytics tab. This app provides a comprehensive view of call details, recordings, and actionable insights, empowering teams to focus on strategic improvements. Step 5: Customizing Dataflow Schedule By default, ECI updates its dataflow every eight hours, refreshing your dashboards with new insights. To modify this schedule: Frequently Asked Questions 1. What are the benefits of Einstein Conversation Insights?Einstein Conversation Insights automates the transcription and analysis of calls, identifies trends, and recommends next steps to accelerate sales cycles and free up sales staff to focus on opportunity closing efforts. 2. Does ECI record calls?No, ECI does not record calls. Instead, it analyzes existing recordings from connected providers to generate insights. 3. Are there any limitations?Yes, Salesforce allows up to 100 custom insights, with each insight accommodating a maximum of 25 keywords, each up to 255 characters long. Conclusion Einstein Conversation Insights is a game-changing tool that analyzes voice and video interactions to provide actionable insights, empowering teams to make data-driven decisions. By integrating with Salesforce and platforms like Zoom, you can effortlessly track call details, identify trends, and streamline workflows. Customizing your dataflow schedule ensures your dashboards always reflect the latest information, enhancing efficiency and enabling timely decision-making. Ready to take your insights further? Start integrating Einstein Conversation Insights today! By Tectonic MarketingOpps Director, Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com