Insights - gettectonic.com
Salesforce's Enterprise General Intelligence

Salesforce’s Enterprise General Intelligence

Salesforce is carving a distinct path in the AI landscape, diverging from the industry’s pursuit of Artificial General Intelligence (AGI). Instead, the company is tackling a pressing, practical challenge: ensuring AI is reliable for enterprise use. Salesforce’s Enterprise General Intelligence (EGI) framework prioritizes consistency, safety, and trustworthiness over speculative potential, aiming to deliver dependable AI for real-world business applications. The EGI FrameworkLarge language models (LLMs) excel at tasks like drafting emails or analyzing datasets but often exhibit “jagged intelligence”—impressive in some areas yet prone to basic errors or fabrications, known as hallucinations. These inconsistencies pose significant risks in enterprise settings, where errors can lead to compliance issues, financial losses, or eroded customer trust. Salesforce’s EGI framework addresses this by focusing on infrastructure that ensures AI reliability today, rather than chasing futuristic goals. From Inconsistency to DependabilitySalesforce likens LLMs to “an intern who writes flawless code but forgets to save the file.” To address this uneven performance, the company is enhancing its AI agents with layered reinforcement to boost consistency. Central to this effort is Agentforce, Salesforce’s agentic system, supported by the Atlas Reasoning Engine, which integrates internal and external data for more accurate reasoning and retrieval. Together, these form the core of EGI, aiming to make digital labor predictable and trustworthy. Rigorous Testing in Real-World ScenariosRather than relying solely on traditional benchmarks, Salesforce introduced CRMArena, a simulated environment that tests AI agents on practical CRM tasks like service support and analytics. Initial results show success rates below 65%, even with guided prompting, underscoring the challenges. However, this is precisely Salesforce’s point: stress-testing AI in realistic conditions exposes weaknesses before deployment, ensuring reliability in customer-facing roles. A Platform for Enterprise TrustSalesforce emphasizes that enterprises need more than powerful models—they require systems guaranteeing predictability and accountability at scale. EGI is positioned as a practical, present-focused solution, sidestepping AGI hype to deliver AI that businesses can trust today. While its long-term impact remains to be seen, Salesforce’s approach signals a pragmatic step toward reliable, enterprise-ready AI. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentic AI Race

How Agentic AI is Redefining Customer Service

Australia’s AI-Powered CX Revolution: How Agentic AI is Redefining Customer Service The Rise of Autonomous Customer Experience Australia has become a global proving ground for a radical shift in customer service – one where AI agents don’t just assist but independently resolve issues, predict needs, and transform brand interactions. This isn’t about simple chatbots following scripts; it’s about agentic AI – intelligent digital agents capable of complex problem-solving, seamless human handoffs, and continuous self-improvement. Leading companies like Zendesk, Salesforce, and digital accommodation provider Urban Rest are already deploying these systems at scale, fundamentally reshaping what customer experience means in 2024 and beyond. Why Agentic AI Changes Everything 1. From Scripted Responses to Genuine Problem-Solving 2. The New Pricing Model: Pay for Resolution, Not Interactions Zendesk is pioneering a radical approach: 3. The Marketing Transformation Salesforce ANZ’s Leandro Perez sees CMOs becoming CX orchestrators: Real-World Deployments Right Now Salesforce’s AI Layer Urban Rest’s Digital Concierge The Human-AI Balance: Trust & Transparency Key insights from frontline deployments: What Leaders Need to Do Now “The last generation managed only humans. The next will manage teams of AI agents,” notes Perez. “That changes everything about leadership.” How Agentic AI is Redefining Customer Service Agentic AI isn’t coming – it’s already here. Early adopters are seeing: As Zendesk’s Gavin puts it: “Don’t wait for perfect. Start learning now – because your competitors certainly are.” The question isn’t whether to adopt, but how fast you can implement responsibly. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Quest to be Data-Driven

Data-Driven Decision-Making in the Age of AI

Data-Driven Decision-Making in the Age of AI: How Agentic Analytics is Closing the Confidence Gap The Data Paradox: More Information, Less Confidence Today’s business leaders face a critical challenge: data overload without clarity. Why? The explosion of raw data has outpaced leaders’ ability to interpret it. “Most executives don’t have data analysts on call—or the training to navigate increasingly complex decisions,” says Southard Jones, Chief Product Officer of Tableau. The result? Missed opportunities, slow responses, and decision paralysis. The Solution: Agentic Analytics – BI’s Next Evolution Enter agentic analytics—where autonomous AI agents work alongside users to:✔ Automate tedious data preparation✔ Surface hidden insights proactively✔ Recommend actions in natural language Unlike traditional dashboards (which quickly become outdated), agentic analytics embeds intelligence directly into workflows—Slack, Teams, Salesforce, and more. How It Works: AI Agents as Your Data Copilots Salesforce’s Tableau Next (an agentic analytics solution) leverages AI agents to: “It’s like Waze for business decisions,” says Jones. “You don’t ask for updates—the AI alerts you to critical changes automatically.” The Foundation: Clean, Unified Data Agentic analytics thrives on trusted data. Yet, most companies struggle with: The Fix: Semantic Layer + Data Cloud Tableau’s Semantics Layer bridges the gap between raw data and business meaning, while Salesforce Data Cloud unifies customer and operational data. Together, they: “This isn’t just for analysts,” notes Jones. “It’s for every leader who needs answers—without writing a single SQL query.” Rebuilding Trust in Data Agentic analytics isn’t just changing BI—it’s democratizing it. By:✅ Eliminating manual data grunt work✅ Delivering insights in real time✅ Speaking the language of business users …it’s helping leaders move from uncertainty to action. “The future isn’t dashboards—it’s AI agents working alongside humans,” says Jones. “That’s how we’ll close the confidence gap and unlock innovation.” Ready to transform your data into decisions?Explore Tableau Next and Salesforce Data Cloud. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
agetnforce for nonprofits

Salesforce Achieves FedRAMP High Authorization for Agentforce

Salesforce Achieves FedRAMP High Authorization for Agentforce, Unlocking $1 Trillion in Public Sector Efficiency Transforming Government Services with AI-Powered Digital Labor Public sector organizations today face a critical challenge: 90% of constituent issues still require manual resolution, leading to delays in vital services like veteran benefits, infrastructure grants, and emergency response. This inefficiency costs the U.S. federal government up to $1 trillion in lost productivity—while citizens endure unnecessary friction in accessing support. To address this, Salesforce has secured FedRAMP High authorization for Agentforce, the autonomous AI layer of the Salesforce Platform, alongside Data Cloud, Marketing Cloud, and Tableau Next. Now, federal agencies can deploy secure, AI-powered digital workers to instantly assist constituents, streamline operations, and free public servants to focus on high-impact missions. The Public Sector AI Opportunity With 87% of Americans open to using AI agents for government services, agencies have an unprecedented chance to: ✅ Enhance Decision-Making ✅ Deliver 24/7 Personalized Support ✅ Automate Administrative Burdens “What if every constituent interaction was immediate, informed, and empathetic? AI agents make this possible,” said Nasi Jafari, EVP & GM of Public Sector at Salesforce. “With digital labor, agencies can exponentially improve service speed, quality, and accessibility.” FedRAMP High-Authorized Innovations Now Available for U.S. Federal Agencies Recently Added FedRAMP High Solutions Why Salesforce Stands Apart Unlike standalone AI tools, Agentforce embeds trust and compliance into every interaction: 🔒 Built-In Guardrails 🤖 Deep Platform Integration 📊 Seamless Data Unification Real-World Impact: Wisconsin’s AI-Powered Economic Development The Wisconsin Economic Development Corporation (WEDC) is leveraging Salesforce and Agentforce to: “This isn’t just about technology—it’s about real impact on people’s lives,” said Joshua Robbins, SVP at WEDC. “AI helps us act faster and smarter for Wisconsin’s communities.” The Bottom Line With AI agents now FedRAMP High-authorized, the U.S. public sector can: The future of government isn’t just automated—it’s intelligent, unified, and human-centered. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Data Governance for the AI Enterprise

A Strategic Approach to Governing Enterprise AI Systems

The Imperative of AI Governance in Modern Enterprises Effective data governance is widely acknowledged as a critical component of deploying enterprise AI applications. However, translating governance principles into actionable strategies remains a complex challenge. This article presents a structured approach to AI governance, offering foundational principles that organizations can adapt to their needs. While not exhaustive, this framework provides a starting point for managing AI systems responsibly. Defining Data Governance in the AI Era At its core, data governance encompasses the policies and processes that dictate how organizations manage data—ensuring proper storage, access, and usage. Two key roles facilitate governance: Traditional data systems operate within deterministic governance frameworks, where structured schemas and well-defined hierarchies enable clear rule enforcement. However, AI introduces non-deterministic challenges—unstructured data, probabilistic decision-making, and evolving models—requiring a more adaptive governance approach. Core Principles for Effective AI Governance To navigate these complexities, organizations should adopt the following best practices: Multi-Agent Architectures: A Governance Enabler Modern AI applications should embrace agent-based architectures, where multiple AI models collaborate to accomplish tasks. This approach draws from decades of distributed systems and microservices best practices, ensuring scalability and maintainability. Key developments facilitating this shift include: By treating AI agents as modular components, organizations can apply service-oriented governance principles, improving oversight and adaptability. Deterministic vs. Non-Deterministic Governance Models Traditional (Deterministic) Governance AI (Non-Deterministic) Governance Interestingly, human governance has long managed non-deterministic actors (people), offering valuable lessons for AI oversight. Legal systems, for instance, incorporate checks and balances—acknowledging human fallibility while maintaining societal stability. Mitigating AI Hallucinations Through Specialization Large language models (LLMs) are prone to hallucinations—generating plausible but incorrect responses. Mitigation strategies include: This mirrors real-world expertise—just as a medical specialist provides domain-specific advice, AI agents should operate within bounded competencies. Adversarial Validation for AI Governance Inspired by Generative Adversarial Networks (GANs), AI governance can employ: This adversarial dynamic improves quality over time, much like auditing processes in human systems. Knowledge Management: The Backbone of AI Governance Enterprise knowledge is often fragmented, residing in: To govern this effectively, organizations should: Ethics, Safety, and Responsible AI Deployment AI ethics remains a nuanced challenge due to: Best practices include: Conclusion: Toward Responsible and Scalable AI Governance AI governance demands a multi-layered approach, blending:✔ Technical safeguards (specialized agents, adversarial validation).✔ Process rigor (knowledge certification, human oversight).✔ Ethical foresight (bias mitigation, risk-aware automation). By learning from both software engineering and human governance paradigms, enterprises can build AI systems that are effective, accountable, and aligned with organizational values. The path forward requires continuous refinement, but with strategic governance, AI can drive innovation while minimizing unintended consequences. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Snowpark Container Services

Snowpark Container Services

Snowpark Container Services (SPCS) is a fully managed container service within Snowflake that allows you to deploy and manage containerized applications and services directly within the Snowflake environment. It enables you to run code, process data, and deploy machine learning models without moving data out of Snowflake.  Here’s a more detailed breakdown: In essence, SPCS extends the capabilities of Snowflake by providing a managed container runtime where you can run custom applications and services alongside your data, without the need to manage the underlying infrastructure.  Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

AdventHealth Pioneers AI-Powered Denials Prevention Strategy

Transforming Denials Management from Reactive to Proactive While many health systems struggle with claim denial rates as high as 20%, AdventHealth is taking an innovative approach—using artificial intelligence to prevent denials before they occur. The Florida-based health system has implemented AI-driven tools that analyze medical documentation for potential issues prior to claim submission, creating a more efficient revenue cycle and better patient experience. “By identifying documentation gaps early, we’re able to address them before they become claim denials,” said Dr. Christopher Riccard, Vice President of Hospital Medicine and Clinical Documentation Integrity at AdventHealth. “This proactive approach helps us reduce delays and confusion for patients while protecting our revenue stream.” The High Cost of Claim Denials Claim denials represent more than just an administrative headache: “Denials don’t just hurt hospitals—they impact patients directly,” Riccard emphasized. “Our goal is to ensure accurate, timely billing so patients understand their financial responsibility without unnecessary delays.” How AI Prevents Denials Before They Happen AdventHealth’s partnership with Iodine Software has yielded a cutting-edge solution: Key results include: Building an Intelligent Revenue Cycle Ecosystem AdventHealth views AI-powered denials prevention as just the beginning. The health system is exploring broader applications of AI across the revenue cycle: Emerging Technologies in Action Human-Centered Implementation Riccard stresses that technology alone isn’t the solution: “Success requires thoughtful integration into existing workflows. We worked closely with our clinical teams to ensure these tools actually solve real problems rather than create new ones.” The Future of Revenue Cycle Management AdventHealth’s strategy represents a paradigm shift in healthcare finance: As Riccard notes: “Our ultimate goal is creating a self-correcting revenue cycle that supports both financial health and patient experience—where potential issues are identified and resolved almost before they emerge.” The health system’s approach demonstrates how AI, when implemented strategically, can transform one of healthcare’s most persistent challenges into an opportunity for improvement across clinical, financial, and patient experience domains. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Future of Hyper-Personalization

Future of Hyper-Personalization

The Future of Hyper-Personalization: Salesforce’s AI-Powered Revolution From Static Campaigns to Real-Time Individualization In today’s digital interaction world, 73% of customers expect companies to understand their unique needs (based on Salesforce Research). Salesforce is answering this demand with a transformative approach to personalization, blending AI, real-time data, and cross-channel orchestration into a seamless system. The Future of Hyper-Personalization is here! The Evolution of Salesforce Personalization From Evergage to AI-Native: A Timeline Key Limitations of Legacy Solutions Introducing Salesforce Personalization: AI at the Core 3 Breakthrough Capabilities How It Works: The Technical Magic Core Components Head-to-Head: Legacy vs. Next-Gen Feature Marketing Cloud Personalization Salesforce Personalization AI Foundation Rules-based Generative + Predictive Data Source Primarily 1st-party Unified (1st/2nd/3rd-party) Channel Coverage Web-centric Omnichannel Setup Complexity High (IT-dependent) Low-code Optimization Manual A/B testing Autonomous AI Proven Impact: Early Results Implementation Roadmap For New Adopters For Existing Marketing Cloud Personalization Users The Future Vision Salesforce is advancing toward: “We’re moving from ‘right message, right time’ to ‘right message before they ask’”— Salesforce CPO Your Next Steps “The last decade was about collecting customer data. This decade is about activating it with intelligence.” Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Power of Sales Automation

The Power of Sales Automation

The Power of Sales Automation: Key Benefits & Tools Sales automation streamlines repetitive tasks, allowing sales teams to focus on high-impact activities while improving accuracy, scalability, and customer engagement. Here’s how automation transforms sales operations: Key Benefits of Sales Automation ✅ Increased EfficiencyAutomation eliminates manual tasks, enabling sales teams to work smarter—not harder—and prioritize strategic efforts like closing deals. ✅ Boosted ProductivityBy handling routine processes, automation frees up time for sales reps to engage in relationship-building and revenue-driving activities. ✅ Enhanced Customer ExperienceAutomated follow-ups, personalized messaging, and timely responses create a seamless and positive buyer journey. ✅ Reduced ErrorsMinimizes human mistakes in data entry, follow-ups, and reporting, ensuring more reliable sales operations. ✅ Accurate ForecastingReal-time data and AI-driven insights improve sales predictions, helping teams make smarter decisions. ✅ Effortless ScalabilityGrow your sales operations without proportionally increasing overhead, making expansion more cost-effective. Common Sales Automation Tasks 🔹 Lead GenerationAutomated tools identify and qualify leads through social media, web forms, and AI-driven prospecting. 🔹 Email MarketingPersonalized drip campaigns nurture leads and keep prospects engaged at every stage. 🔹 Sales Call SchedulingAI-powered schedulers book meetings and send reminders, reducing back-and-forth emails. 🔹 Data ManagementCRM automation ensures customer records stay updated, improving sales team efficiency. 🔹 Quote GenerationInstant, customized quotes speed up the sales cycle and reduce manual work. 🔹 Sales ForecastingAI analyzes trends and historical data to predict future performance with greater accuracy. Top Sales Automation Tools 📌 CRM SystemsThe backbone of sales automation, centralizing customer data and streamlining workflows (e.g., Salesforce, HubSpot). 📌 Sales Engagement PlatformsAutomate outreach with sequenced emails, calls, and follow-ups (e.g., Outreach, SalesLoft). 📌 Lead Generation ToolsAI-powered solutions to find and qualify prospects (e.g., LinkedIn Sales Navigator, ZoomInfo). 📌 Email Marketing SoftwareDesign and deploy automated campaigns (e.g., Mailchimp, ActiveCampaign). 📌 AI-Powered Sales AssistantsAdvanced tools that predict customer needs, personalize interactions, and automate complex tasks (e.g., Conversica, Gong). The Future of Sales: Smarter, Faster, More Efficient Sales automation isn’t just about cutting costs—it’s about empowering teams to sell more effectively. By leveraging AI and automation, businesses can enhance productivity, improve customer relationships, and scale operations seamlessly. Is your sales team ready to automate? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Learning AI

The Open-Source Agent Framework Landscape

The Open-Source Agent Framework Landscape: Beyond CrewAI & AutoGen The AI agent ecosystem has exploded with new frameworks—each offering unique approaches to building autonomous systems. While CrewAI and AutoGen dominate discussions, alternatives like LangGraph, Agno, SmolAgents, Mastra, PydanticAI, and Atomic Agents are gaining traction. Here’s a breakdown of how they compare, their design philosophies, and which might be right for your use case. What Do Agent Frameworks Actually Do? Agentic AI frameworks help structure LLM workflows by handling:✅ Prompt engineering (formatting inputs/outputs)✅ Tool routing (API calls, RAG, function execution)✅ State management (short-term memory)✅ Multi-agent orchestration (collaboration & hierarchies) At their core, they abstract away the manual work of: But too much abstraction can backfire—some developers end up rewriting parts of frameworks (like LangGraph’s create_react_agent) for finer control. The Frameworks Compared 1. The Big Players: CrewAI & AutoGen Framework Best For Key Differentiator CrewAI Quick prototyping High abstraction, hides low-level details AutoGen Research/testing Asynchronous, agent-driven collaboration CrewAI lets you spin up agents fast but can be opaque when debugging. AutoGen excels in freeform agent teamwork but may lack structure for production use. 2. The Rising Stars Framework Philosophy Strengths Weaknesses LangGraph Graph-based workflows Fine-grained control, scalable multi-agent Steep learning curve Agno (ex-Phi-Data) Developer experience Clean docs, plug-and-play Newer, fewer examples SmolAgents Minimalist Code-based routing, Hugging Face integration Limited scalability Mastra (JS) Frontend-friendly Built for web devs Less backend flexibility PydanticAI Type-safe control Predictable outputs, easy debugging Manual orchestration Atomic Agents Lego-like modularity Explicit control, no black boxes More coding required Key Differences in Approach 1. Abstraction Level 2. Agency vs. Control 3. Multi-Agent Support What’s Missing? Not all frameworks handle:🔹 Multimodality (images/audio)🔹 Long-term memory (beyond session state)🔹 Enterprise scalability (LangGraph leads here) Which One Should You Choose? Use Case Recommended Framework Quick prototyping CrewAI, Agno Research/experiments AutoGen, SmolAgents Production multi-agent LangGraph, PydanticAI Strict control & debugging Atomic Agents, PydanticAI Frontend integration Mastra For beginners: Start with Agno or CrewAI.For engineers: LangGraph or PydanticAI offer the most flexibility. Final Thoughts The “best” framework depends on your needs: While some argue these frameworks overcomplicate what SDKs already do, they’re invaluable for scaling agent systems. The space is evolving fast—expect more consolidation and innovation ahead. Try a few, see what clicks, and build something awesome!  l Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Absorbs AI Recruitment Startup Moonhub

Salesforce Absorbs AI Recruitment Startup Moonhub

Salesforce Absorbs AI Recruitment Startup Moonhub in Talent Acquisition Push Salesforce has effectively acquired Moonhub, an AI-powered recruitment startup, though the financial terms remain undisclosed. The move follows Salesforce’s recent $8 billion deal for Informatica and its purchase of Convergence.ai, signaling aggressive expansion in enterprise AI. Moonhub, a Menlo Park-based firm founded in 2022 by ex-Meta engineer Nancy Xu, announced on its website that its team would transition to Salesforce, an early investor. While Salesforce clarified to TechCrunch that this does not constitute a formal acquisition (Moonhub will cease operations), key personnel will join the tech giant to bolster its AI initiatives, including Agentforce, Salesforce’s AI agent ecosystem. Why Moonhub? Moonhub specialized in AI-driven talent sourcing, automating candidate discovery, outreach, onboarding, and payroll. Its clients included Fortune 500 companies, and it had raised $14.4 million from backers like Khosla Ventures, GV (Google Ventures), and Salesforce Ventures. Xu emphasized cultural alignment, stating: “Salesforce shares our core values—customer trust and a belief in AI’s role in global innovation. Together, we’ll accelerate this mission.” The Bigger Picture: AI’s HR Takeover The deal reflects the rapid adoption of AI in HR, with 93% of Fortune 500 CHROs already deploying such tools (Gallup). However, reactions remain mixed as automation reshapes recruitment. What’s Next? With Moonhub’s team now inside Salesforce, expect tighter integration of AI agents into Salesforce’s talent solutions. Meanwhile, the startup’s standalone product will sunset, marking another example of Big Tech absorbing innovative AI ventures. Key Takeaways:✅ Moonhub’s team joins Salesforce (no formal acquisition, but a strategic absorption).🤖 Focus on AI recruitment tools (automated hiring, onboarding, payroll).📈 Part of Salesforce’s broader AI push (following Informatica, Convergence.ai deals).💡 HR AI adoption is booming—but not without controversy. Update: Clarified acquisition status per Salesforce’s statement. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Marketing Cloud Next

Marketing Cloud Next

Marketing Cloud Next: The Dawn of Agentic Marketing Redefining Marketing in the AI Era Salesforce has unveiled Marketing Cloud Next — the world’s first full-funnel agentic marketing platform that transforms every customer interaction into an intelligent, two-way conversation. This isn’t just an upgrade; it’s a paradigm shift from static campaigns to dynamic, AI-driven engagement ecosystems. New UI New Functionality B2B and B2C on the same platform Built on core Why This Changes Everything “75% of marketers use AI, but only 32% see real impact. Agentic marketing closes this gap.” How Agentic Marketing Works The Old Way vs. The New Way Traditional Marketing Agentic Marketing Manual campaign builds AI assembles full campaigns from briefs One-way communications Dynamic two-way conversations Siloed channels Unified customer journey orchestration Post-campaign analytics Real-time autonomous optimization Generic personalization 1:1 micro-segmentation Example: An AI agent detects a high-value lead browsing pricing pages at 2 AM. It: Key Innovations in Marketing Cloud Next 1. Create: Campaigns at the Speed of Thought “P&G reduced campaign launch time from 3 weeks to 4 hours in beta tests.” 2. Engage: Always-On Conversations 3. Qualify: Smarter Lead Management 4. Optimize: Autonomous Performance The Technology Behind the Revolution Agentforce AI Architecture Real-World Impact Case Study: Global Retailer By the Numbers Getting Started Availability Migration Path “Early adopters see ROI in <90 days by focusing on high-friction processes first.” The Future of Marketing is Agentic With Marketing Cloud Next, Salesforce isn’t just adding AI features — it’s rearchitecting marketing around autonomous collaboration. This is the end of:❌ Spray-and-pray campaigns❌ Siloed channel strategies❌ Post-mortem analytics And the beginning of:✅ Self-optimizing customer journeys✅ Frictionless cross-team coordination✅ Real-time revenue impact visibility Ready to transform your marketing? Join the waitlist for exclusive early access. Contact Tecctonic on the form below. #MarketingInnovation #AI #Salesforce #CustomerExperience #DigitalTransformation Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Whoever cracks reliable, scalable atomic power first could gain an insurmountable edge in the AI arms race.

The Nuclear Power Revival

The Nuclear Power Revival: How Big Tech is Fueling AI with Small Modular Reactors From Meltdowns to Megawatts: Nuclear’s Second Act Following two catastrophic nuclear accidents—Three Mile Island (1979) and Chernobyl (1986)—public trust in atomic energy plummeted. But today, an unlikely force is driving its resurgence: artificial intelligence. As generative AI explodes in demand, tech giants face an unprecedented energy crisis. Data centers, already consuming 2-3% of U.S. electricity, could devour 9% by 2030 (Electric Power Research Institute). With aging power grids struggling to keep up, cloud providers are taking matters into their own hands—by turning to small modular reactors (SMRs). Why AI Needs Nuclear Power The Energy Crisis No One Saw Coming Enter Small Modular Reactors (SMRs) The global SMR market for data centers is projected to hit 8M by 2033, growing at 48.72% annually (Research and Markets). The Big Four Tech Players Going Nuclear 1. Microsoft: Reviving Three Mile Island 2. Google: Betting on Next-Gen SMRs 3. Amazon: Three-Pronged Nuclear Push 4. Oracle: Plans Under Wraps The Startups Building Tomorrow’s Nuclear Tech Company Backer/Notable Feature Innovation Oklo Sam Altman (OpenAI) Rural SMRs targeting 2027 launch TerraPower Bill Gates Sodium-cooled fast reactors NuScale First U.S.-approved SMR design Factory-built, modular light-water reactors Last Energy 80+ microreactors planned in Europe/Texas 20MW units for data centers Deep Atomic Swiss startup MK60 reactor with dedicated cooling power Valar Atomics “Gigasite” assembly lines On-site SMR production Newcleo Lead-cooled fast reactors Higher safety via liquid metal cooling Challenges Ahead The Bottom Line As AI’s hunger for power grows exponentially, Big Tech is bypassing traditional utilities to build its own nuclear future. While risks remain, SMRs offer a scalable, clean solution—potentially rewriting energy economics in the AI era. The race is on: Whoever cracks reliable, scalable atomic power first could gain an insurmountable edge in the AI arms race. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com