Data - gettectonic.com - Page 13
Python Alongside Salesforce

Python Losing the Crown

For years, Python has been synonymous with data science, thanks to its robust libraries like NumPy, Pandas, and scikit-learn. It’s long held the crown as the dominant programming language in the field. However, even the strongest kingdoms face threats. Python Losing the Crown. The whispers are growing louder: Is Python’s reign nearing its end? Before you fire up your Jupyter notebook to prove me wrong, let me clarify — Python is incredible and undeniably one of the greatest programming languages of all time. But no ruler is without flaws, and Python’s supremacy may not last forever. Here are five reasons why Python’s crown might be slipping. 1. Performance Bottlenecks: Python’s Achilles’ Heel Let’s address the obvious: Python is slow. Its interpreted nature makes it inherently less efficient than compiled languages like C++ or Java. Sure, libraries like NumPy and tools like Cython help mitigate these issues, but at its core, Python can’t match the raw speed of newer, more performance-oriented languages. Enter Julia and Rust, which are optimized for numerical computing and high-performance tasks. When working with massive, real-time datasets, Python’s performance bottlenecks become harder to ignore, prompting some developers to offload critical tasks to faster alternatives. 2. Python’s Memory Challenges Memory consumption is another area where Python struggles. Handling large datasets often pushes Python to its limits, especially in environments with constrained resources, such as edge computing or IoT. While tools like Dask can help manage memory more efficiently, these are often stopgap solutions rather than true fixes. Languages like Rust are gaining traction for their superior memory management, making them an attractive alternative for resource-limited scenarios. Picture running a Python-based machine learning model on a Raspberry Pi, only to have it crash due to memory overload. Frustrating, isn’t it? 3. The Rise of Domain-Specific Languages (DSLs) Python’s versatility has been both its strength and its weakness. As industries mature, many are turning to domain-specific languages tailored to their specific needs: Python may be the “jack of all trades,” but as the saying goes, it risks being the “master of none” compared to these specialized tools. 4. Python’s Simplicity: A Double-Edged Sword Python’s beginner-friendly syntax is one of its greatest strengths, but it can also create complacency. Its ease of use often means developers don’t delve into the deeper mechanics of algorithms or computing. Meanwhile, languages like Julia, designed for scientific computing, offer intuitive structures for advanced modeling while encouraging developers to engage with complex mathematical concepts. Python’s simplicity is like riding a bike with training wheels: it works, but it may not push you to grow as a developer. 5. AI-Specific Frameworks Are Gaining Ground Python has been the go-to language for AI, powering frameworks like TensorFlow, PyTorch, and Keras. But new challengers are emerging: As AI and machine learning evolve, these specialized frameworks could chip away at Python’s dominance. The Verdict: Python Losing the Crown? Python remains the Swiss Army knife of programming languages, especially in data science. However, its cracks are showing as new, specialized tools and faster languages emerge. The data science landscape is evolving, and Python must adapt or risk losing its crown. For now, Python is still king. But as history has shown, no throne is secure forever. The future belongs to those who innovate, and Python’s ability to evolve will determine whether it remains at the top. The throne of code is only as stable as the next breakthrough. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI That Forgets

AI That Forgets

Salesforce has introduced a generative AI system designed to prioritize data privacy through a unique “forgetting” feature. This innovation allows the AI to process information through large language models (LLMs) without retaining the data, helping companies manage sensitive information more securely. AI That Forgets. As part of the latest wave in generative AI, Salesforce’s solution takes the form of digital “agents”—intelligent systems capable of understanding and responding to customer inquiries autonomously. CEO Marc Benioff has hailed this development as a significant breakthrough for the company, emphasizing its potential to transform customer interactions. AI That Forgets. At a recent event, Patrick Stokes, Salesforce’s EVP of Products and Industries, highlighted how this system supports organizations by reducing the costs and risks associated with building their own AI models. According to Stokes, many companies lack the resources to develop in-house AI sustainably, and Salesforce’s privacy-first approach provides an appealing alternative. Rather than focusing solely on creating the most powerful LLM, Salesforce has built AI agents that connect data and actions securely, addressing privacy concerns that have hindered AI adoption. AI That Forgets Salesforce’s approach integrates privacy-focused safeguards, which Stokes describes as a “trust layer” within the AI system. This feature verifies that data retrieved during an AI query aligns with the user’s access permissions, protecting sensitive information. Stokes notes that unlike traditional AI models that retain data, Salesforce’s LLM processes only the information required for each interaction and then “forgets” it afterward. This zero-retention approach creates a more secure environment, where companies retain governance over data usage and minimize risks associated with long-term data storage. Zahra Bahrololoumi, CEO of Salesforce UK and Ireland, also emphasized that Salesforce’s AI solutions offer users the confidence to adopt generative AI without compromising security. With over 1,000 AI agents already implemented, companies are benefiting from reduced burnout and increased productivity while maintaining data trust and integrity. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Risk Management

AI Risk Management

Organizations must acknowledge the risks associated with implementing AI systems to use the technology ethically and minimize liability. Throughout history, companies have had to manage the risks associated with adopting new technologies, and AI is no exception. Some AI risks are similar to those encountered when deploying any new technology or tool, such as poor strategic alignment with business goals, a lack of necessary skills to support initiatives, and failure to secure buy-in across the organization. For these challenges, executives should rely on best practices that have guided the successful adoption of other technologies. In the case of AI, this includes: However, AI introduces unique risks that must be addressed head-on. Here are 15 areas of concern that can arise as organizations implement and use AI technologies in the enterprise: Managing AI Risks While AI risks cannot be eliminated, they can be managed. Organizations must first recognize and understand these risks and then implement policies to minimize their negative impact. These policies should ensure the use of high-quality data, require testing and validation to eliminate biases, and mandate ongoing monitoring to identify and address unexpected consequences. Furthermore, ethical considerations should be embedded in AI systems, with frameworks in place to ensure AI produces transparent, fair, and unbiased results. Human oversight is essential to confirm these systems meet established standards. For successful risk management, the involvement of the board and the C-suite is crucial. As noted, “This is not just an IT problem, so all executives need to get involved in this.” Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
What is Explainable AI

What is Explainable AI

Building a trusted AI system starts with ensuring transparency in how decisions are made. Explainable AI is vital not only for addressing trust issues within organizations but also for navigating regulatory challenges. According to research from Forrester, many business leaders express concerns over AI, particularly generative AI, which surged in popularity following the 2022 release of ChatGPT by OpenAI. “AI faces a trust issue,” explained Forrester analyst Brandon Purcell, underscoring the need for explainability to foster accountability. He highlighted that explainability helps stakeholders understand how AI systems generate their outputs. “Explainability builds trust,” Purcell stated at the Forrester Technology and Innovation Summit in Austin, Texas. “When employees trust AI systems, they’re more inclined to use them.” Implementing explainable AI does more than encourage usage within an organization—it also helps mitigate regulatory risks, according to Purcell. Explainability is crucial for compliance, especially under regulations like the EU AI Act. Forrester analyst Alla Valente emphasized the importance of integrating accountability, trust, and security into AI efforts. “Don’t wait for regulators to set standards—ensure you’re already meeting them,” she advised at the summit. Purcell noted that explainable AI varies depending on whether the AI model is predictive, generative, or agentic. Building an Explainable AI System AI explainability encompasses several key elements, including reproducibility, observability, transparency, interpretability, and traceability. For predictive models, transparency and interpretability are paramount. Transparency involves using “glass-box modeling,” where users can see how the model analyzed the data and arrived at its predictions. This approach is likely to be a regulatory requirement, especially for high-risk applications. Interpretability is another important technique, useful for lower-risk cases such as fraud detection or explaining loan decisions. Techniques like partial dependence plots show how specific inputs affect predictive model outcomes. “With predictive AI, explainability focuses on the model itself,” Purcell noted. “It’s one area where you can open the hood and examine how it works.” In contrast, generative AI models are often more opaque, making explainability harder. Businesses can address this by documenting the entire system, a process known as traceability. For those using models from vendors like Google or OpenAI, tools like transparency indexes and model cards—which detail the model’s use case, limitations, and performance—are valuable resources. Lastly, for agentic AI systems, which autonomously pursue goals, reproducibility is key. Businesses must ensure that the model’s outputs can be consistently replicated with similar inputs before deployment. These systems, like self-driving cars, will require extensive testing in controlled environments before being trusted in the real world. “Agentic systems will need to rack up millions of virtual miles before we let them loose,” Purcell concluded. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Cohere-Powered Slack Agents

Cohere-Powered Slack Agents

Salesforce AI and Cohere-Powered Slack Agents: Seamless CRM Data Interaction and Enhanced Productivity Slack agents, powered by Salesforce AI and integrated with Cohere, enable seamless interaction with CRM data within the Slack platform. These agents allow teams to use natural language to surface data insights and take action, simplifying workflows. With Slack’s AI Workflow Builder and support for third-party AI agents, including Cohere, productivity is further enhanced through automated processes and customizable AI assistants. By leveraging these technologies, Slack agents provide users with direct access to CRM data and AI-powered insights, improving efficiency and collaboration. Key Features of Slack Agents: Salesforce AI and Cohere Productivity Enhancements with Slack Agents: Salesforce AI and Cohere AI Agent Capabilities in Slack: Salesforce and Cohere Data Security and Compliance for Slack Agents FAQ What are Slack agents, and how do they integrate with Salesforce AI and Cohere?Slack agents are AI-powered assistants that enable teams to interact with CRM data directly within Slack. Salesforce AI agents allow natural language data interactions, while Cohere’s integration enhances productivity with customizable AI assistants and automated workflows. How do Salesforce AI agents in Slack improve team productivity?Salesforce AI agents enable users to interact with both CRM and conversational data, update records, and analyze opportunities using natural language. This integration improves workflow efficiency, leading to a reported 47% productivity boost. What features does the Cohere integration with Slack AI offer?Cohere integration offers customizable AI assistants that can help generate workflows, summarize channel content, and provide intelligent responses to user queries within Slack. How do Slack agents handle data security and compliance?Slack agents leverage cloud-native DLP solutions, automatically detecting sensitive data across different file types and setting up automated remediation processes for enhanced security and compliance. Can Slack agents work with AI providers beyond Salesforce and Cohere?Yes, Slack supports AI agents from various providers. In addition to Salesforce AI and Cohere, integrations include Adobe Express, Anthropic, Perplexity, IBM, and Amazon Q Business, offering users a wide array of AI-powered capabilities. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI in Networking

AI in Networking

AI Tools in Networking: Tailoring Capabilities to Unique Needs AI tools are becoming increasingly common across various industries, offering a wide range of functionalities. However, network engineers may not require every capability these tools provide. Each network has distinct requirements that align with specific business objectives, necessitating that network engineers and developers select AI toolsets tailored to their networks’ needs. While network teams often desire similar AI capabilities, they also encounter common challenges in integrating these tools into their systems. The Rise of AI in Networking Though AI is not a new concept—having existed for decades in the form of automated and expert systems—it is gaining unprecedented attention. According to Jim Frey, principal analyst for networking at TechTarget’s Enterprise Strategy Group, many organizations have not fully grasped AI’s potential in production environments over the past three years. “AI has been around for a long time, but the interesting thing is, only a minority—not even half—have really said they’re using it effectively in production for the last three years,” Frey noted. Generative AI (GenAI) has significantly contributed to this renewed interest in AI. Shamus McGillicuddy, vice president of research at Enterprise Management Associates, categorizes AI tools into two main types: GenAI and AIOps (AI for IT operations). “Generative AI, like ChatGPT, has recently surged in popularity, becoming a focal point of discussion among IT professionals,” McGillicuddy explained. “AIOps, on the other hand, encompasses machine learning, anomaly detection, and analytics.” The increasing complexity of networks is another factor driving the adoption of AI in networking. Frey highlighted that the demands of modern network environments are beyond human capability to manage manually, making AI engines a vital solution. Essential AI Tool Capabilities for Networks While individual network needs vary, many network engineers seek similar functionalities when integrating AI. Commonly desired capabilities include: According to McGillicuddy’s research, network optimization and automated troubleshooting are among the most popular use cases for AI. However, many professionals prefer to retain manual oversight in the fixing process. “Automated troubleshooting can identify and analyze issues, but typically, people want to approve the proposed fixes,” McGillicuddy stated. Many of these capabilities are critical for enhancing security and mitigating threats. Frey emphasized that networking professionals increasingly view AI as a tool to improve organizational security. DeCarlo echoed this sentiment, noting that network managers share similar objectives with security professionals regarding proactive problem recognition. Frey also mentioned alternative use cases for AI, such as documentation and change recommendations, which, while less popular, can offer significant value to network teams. Ultimately, the relevance of any AI capability hinges on its fit within the network environment and team needs. “I don’t think you can prioritize one capability over another,” DeCarlo remarked. “It depends on the tools being used and their effectiveness.” Generative AI: A New Frontier Despite its recent emergence, GenAI has quickly become an asset in the networking field. McGillicuddy noted that in the past year and a half, network professionals have adopted GenAI tools, with ChatGPT being one of the most recognized examples. “One user reported that leveraging ChatGPT could reduce a task that typically takes four hours down to just 10 minutes,” McGillicuddy said. However, he cautioned that users must understand the limitations of GenAI, as mistakes can occur. “There’s a risk of errors or ‘hallucinations’ with these tools, and having blind faith in their outputs can lead to significant network issues,” he warned. In addition to ChatGPT, vendors are developing GenAI interfaces for their products, including virtual assistants. According to McGillicuddy’s findings, common use cases for vendor GenAI products include: DeCarlo added that GenAI tools offer valuable training capabilities due to their rapid processing speeds and in-depth analysis, which can expedite knowledge acquisition within the network. Frey highlighted that GenAI’s rise is attributed to its ability to outperform older systems lacking sophistication. Nevertheless, the complexity of GenAI infrastructures has led to a demand for AIOps tools to manage these systems effectively. “We won’t be able to manage GenAI infrastructures without the support of AI tools, as human capabilities cannot keep pace with rapid changes,” Frey asserted. Challenges in Implementing AI Tools While AI tools present significant benefits for networks, network engineers and managers must navigate several challenges before integration. Data Privacy, Collection, and Quality Data usage remains a critical concern for organizations considering AIOps and GenAI tools. Frey noted that the diverse nature of network data—combining operational information with personally identifiable information—heightens data privacy concerns. For GenAI, McGillicuddy pointed out the importance of validating AI outputs and ensuring high-quality data is utilized for training. “If you feed poor data to a generative AI tool, it will struggle to accurately understand your network,” he explained. Complexity of AI Tools Frey and McGillicuddy agreed that the complexity of both AI and network systems could hinder effective deployment. Frey mentioned that AI systems, especially GenAI, require careful tuning and strong recommendations to minimize inaccuracies. McGillicuddy added that intricate network infrastructures, particularly those involving multiple vendors, could limit the effectiveness of AIOps components, which are often specialized for specific systems. User Uptake and Skills Gaps User adoption of AI tools poses a significant challenge. Proper training is essential to realize the full benefits of AI in networking. Some network professionals may be resistant to using AI, while others may lack the knowledge to integrate these tools effectively. McGillicuddy noted that AIOps tools are often less intuitive than GenAI, necessitating a certain level of expertise for users to extract value. “Understanding how tools function and identifying potential gaps can be challenging,” DeCarlo added. The learning curve can be steep, particularly for teams accustomed to longstanding tools. Integration Issues Integration challenges can further complicate user adoption. McGillicuddy highlighted two dimensions of this issue: tools and processes. On the tools side, concerns arise about harmonizing GenAI with existing systems. “On the process side, it’s crucial to ensure that teams utilize these tools effectively,” he said. DeCarlo cautioned that organizations might need to create in-house supplemental tools to bridge integration gaps, complicating the synchronization of vendor AI

Read More
Document Checklist in Salesforce Screen Flow

Document Checklist in Salesforce Screen Flow

One effective way to accomplish this is by using the Document Matrix element in Discovery Framework–based OmniScripts. This approach allows you to streamline the assessment process and ensure that the advisor uploads the correct documents.

Read More
Salesforce Government Cloud Premium

Salesforce Government Cloud Premium

Software company Salesforce announced on Monday that it has rolled out a new version of its government cloud that has Top Secret authorization and is geared toward U.S. national security agencies and intelligence organizations.

The new offering, called Government Cloud Premium, is hosted on Amazon Web Services’ Top Secret cloud.

Read More

Cohesity Data Explore

Cohesity has introduced Data Explore, a new feature in its Gaia generative AI platform, aimed at simplifying data search within backups for any employee. The update, launched this week, adds keyword search capabilities and data visualization through topic word clouds, enhancing user access to valuable information. Previously, users could interact with Gaia’s conversational AI interface to ask questions about stored data. Data Explore now extends this by enabling users to browse frequent keywords within data sets and receive search suggestions to help refine their queries. This addition is particularly valuable for users who may not know exactly what to ask when exploring backup data. As part of the update, Gaia’s support for file storage systems has also expanded. Gaia now integrates with both on-premises and cloud-based file servers, such as Dell Technologies’ PowerScale and NetApp systems, in addition to existing support for Microsoft 365 services like Outlook, SharePoint, and OneDrive. This enhanced search functionality reflects a broader trend among backup vendors to deliver greater utility from stored data, according to Simon Robinson of TechTarget’s Enterprise Strategy Group. He noted that tools making data accessible to non-experts bring businesses closer to the goal of actionable insights. “You don’t need to be a corporate librarian to use this stuff,” Robinson said. Data Explore’s semantic indexing, similar to internet search engines, aids users by automatically surfacing keywords, questions, and suggestions, making backup data more searchable and actionable. According to Krista Case, an analyst at Futurum Group, this helps reduce AI hype by grounding Gaia in practical use cases, facilitating faster insights for end users. Since Gaia’s launch as a SaaS add-on for Cohesity Data Cloud, its features have evolved to offer deeper insights beyond simple chatbot interactions. Greg Statton, Cohesity’s VP of AI solutions, shared that the platform aims to be more than a support agent for backup queries. The vision is to provide advanced AI tools that enhance data discovery, flag abnormal events, and reduce alert fatigue, giving IT administrators actionable intelligence that is more contextually aware of their tasks. Ultimately, Cohesity’s Data Explore feature exemplifies generative AI’s potential in unlocking business value from backup data. By making this data accessible and understandable, Cohesity is helping organizations achieve the long-awaited promise of deriving value from stored data – a milestone Robinson believes backup vendors are now on the verge of realizing. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Fully Formatted Facts

Fully Formatted Facts

A recent discovery by programmer and inventor Michael Calvin Wood is addressing a persistent challenge in AI: hallucinations. These false or misleading outputs, long considered an inherent flaw in large language models (LLMs), have posed a significant issue for developers. However, Wood’s breakthrough is challenging this assumption, offering a solution that could transform how AI-powered applications are built and used. The Importance of Wood’s Discovery for Developers Wood’s findings have substantial implications for developers working with AI. By eliminating hallucinations, developers can ensure that AI-generated content is accurate and reliable, particularly in applications where precision is critical. Understanding the Root Cause of Hallucinations Contrary to popular belief, hallucinations are not primarily caused by insufficient training data or biased algorithms. Wood’s research reveals that the issue stems from how LLMs process and generate information based on “noun-phrase routes.” LLMs organize information around noun phrases, and when they encounter semantically similar phrases, they may conflate or misinterpret them, leading to incorrect outputs. How LLMs Organize Information For example: The Noun-Phrase Dominance Model Wood’s research led to the development of the Noun-Phrase Dominance Model, which posits that neural networks in LLMs self-organize around noun phrases. This model is key to understanding and eliminating hallucinations by addressing how AI processes noun-phrase conflicts. Fully-Formatted Facts (FFF): A Solution Wood’s solution involves transforming input data into Fully-Formatted Facts (FFF)—statements that are literally true, devoid of noun-phrase conflicts, and structured as simple, complete sentences. Presenting information in this format has led to significant improvements in AI accuracy, particularly in question-answering tasks. How FFF Processing Works While Wood has not provided a step-by-step guide for FFF processing, he hints that the process began with named-entity recognition using the Python SpaCy library and evolved into using an LLM to reduce ambiguity while retaining the original writing style. His company’s REST API offers a wrapper around GPT-4o and GPT-4o-mini models, transforming input text to remove ambiguity before processing it. Current Methods vs. Wood’s Approach Current approaches, like Retrieval Augmented Generation (RAG), attempt to reduce hallucinations by adding more context. However, these methods often introduce additional noun-phrase conflicts. For instance, even with RAG, ChatGPT-3.5 Turbo experienced a 23% hallucination rate when answering questions about Wikipedia articles. In contrast, Wood’s method focuses on eliminating noun-phrase conflicts entirely. Results: RAG FF (Retrieval Augmented Generation with Formatted Facts) Wood’s method has shown remarkable results, eliminating hallucinations in GPT-4 and GPT-3.5 Turbo during question-answering tasks using third-party datasets. Real-World Example: Translation Error Elimination Consider a simple translation example: This transformation eliminates hallucinations by removing the potential noun-phrase conflict. Implications for the Future of AI The Noun-Phrase Dominance Model and the use of Fully-Formatted Facts have far-reaching implications: Roadmap for Future Development Wood and his team plan to expand their approach by: Conclusion: A New Era of Reliable AI Wood’s discovery represents a significant leap forward in the pursuit of reliable AI. By aligning input data with how LLMs process information, he has unlocked the potential for accurate, trustworthy AI systems. As this technology continues to evolve, it could have profound implications for industries ranging from healthcare to legal services, where AI could become a consistent and reliable tool. While there is still work to be done in expanding this method across all AI tasks, the foundation has been laid for a revolution in AI accuracy. Future developments will likely focus on refining and expanding these capabilities, enabling AI to serve as a trusted resource across a range of applications. Experience RAGFix For those looking to explore this technology, RAGFix offers an implementation of these groundbreaking concepts. Visit their official website to access demos, explore REST API integration options, and stay updated on the latest advancements in hallucination-free AI: Visit RAGFix.ai Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce and Stripe Integration

Salesforce and Stripe Integration

Processing weekly payments can often become time-consuming, with organizations spending significant time just tracking payments post-invoice. Timely updates on payment processing have been a longstanding priority, particularly for companies needing flexible payment options to meet beneficiary needs. The integration of Stripe with Salesforce addresses these challenges, offering a streamlined, efficient solution. Salesforce and Stripe Integration. With a focus on faster processing, this integration enhances payment management, invoicing, and financial oversight. Here’s an overview of the benefits that Stripe and Salesforce integration brings to businesses. Key Benefits of Integrating Stripe with Salesforce Modern businesses demand efficient, seamless transactions. Here are some of the major advantages of combining Stripe and Salesforce: Why Businesses Should Consider Salesforce and Stripe Integration Having implemented this integration for various clients, we have seen how it supports efficient operations. Here are a few reasons why businesses should consider this approach: Simplify Payments with Salesforce and Stripe Integration The Stripe and Salesforce integration represents a transformative opportunity for businesses to improve operational efficiency and customer experience. Beyond a simple tool pairing, this integration paves the way for scalable, complex business operations. Successful integration, however, requires knowledgeable professionals who understand the nuances of customization to fit each organization’s unique needs. Reach out to experienced experts to optimize your integration and harness its full potential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Customer Service Agents Explained

AI Customer Service Agents Explained

AI customer service agents are advanced technologies designed to understand and respond to customer inquiries within defined guidelines. These agents can handle both simple and complex issues, such as answering frequently asked questions or managing product returns, all while offering a personalized, conversational experience. Research shows that 82% of service representatives report that customers ask for more than they used to. As a customer service leader, you’re likely facing increasing pressure to meet these growing expectations while simultaneously reducing costs, speeding up service, and providing personalized, round-the-clock support. This is where AI customer service agents can make a significant impact. Here’s a closer look at how AI agents can enhance your organization’s service operations, improve customer experience, and boost overall productivity and efficiency. What Are AI Customer Service Agents? AI customer service agents are virtual assistants designed to interact with customers and support service operations. Utilizing machine learning and natural language processing (NLP), these agents are capable of handling a broad range of tasks, from answering basic inquiries to resolving complex issues — even managing multiple tasks at once. Importantly, AI agents continuously improve through self-learning. Why Are AI-Powered Customer Service Agents Important? AI-powered customer service technology is becoming essential for several reasons: Benefits of AI Customer Service Agents AI customer service agents help service teams manage growing service demands by taking on routine tasks and providing essential support. Key benefits include: Why Choose Agentforce Service Agent? If you’re considering adding AI customer service agents to your strategy, Agentforce Service Agent offers a comprehensive solution: By embracing AI customer service agents like Agentforce Service Agent, businesses can reduce costs, meet growing customer demands, and stay competitive in an ever-evolving global market. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
LLMs and AI

LLMs and AI

Large Language Models (LLMs): Revolutionizing AI and Custom Solutions Large Language Models (LLMs) are transforming artificial intelligence by enabling machines to generate and comprehend human-like text, making them indispensable across numerous industries. The global LLM market is experiencing explosive growth, projected to rise from $1.59 billion in 2023 to $259.8 billion by 2030. This surge is driven by the increasing demand for automated content creation, advances in AI technology, and the need for improved human-machine communication. Several factors are propelling this growth, including advancements in AI and Natural Language Processing (NLP), large datasets, and the rising importance of seamless human-machine interaction. Additionally, private LLMs are gaining traction as businesses seek more control over their data and customization. These private models provide tailored solutions, reduce dependency on third-party providers, and enhance data privacy. This guide will walk you through building your own private LLM, offering valuable insights for both newcomers and seasoned professionals. What are Large Language Models? Large Language Models (LLMs) are advanced AI systems that generate human-like text by processing vast amounts of data using sophisticated neural networks, such as transformers. These models excel in tasks such as content creation, language translation, question answering, and conversation, making them valuable across industries, from customer service to data analysis. LLMs are generally classified into three types: LLMs learn language rules by analyzing vast text datasets, similar to how reading numerous books helps someone understand a language. Once trained, these models can generate content, answer questions, and engage in meaningful conversations. For example, an LLM can write a story about a space mission based on knowledge gained from reading space adventure stories, or it can explain photosynthesis using information drawn from biology texts. Building a Private LLM Data Curation for LLMs Recent LLMs, such as Llama 3 and GPT-4, are trained on massive datasets—Llama 3 on 15 trillion tokens and GPT-4 on 6.5 trillion tokens. These datasets are drawn from diverse sources, including social media (140 trillion tokens), academic texts, and private data, with sizes ranging from hundreds of terabytes to multiple petabytes. This breadth of training enables LLMs to develop a deep understanding of language, covering diverse patterns, vocabularies, and contexts. Common data sources for LLMs include: Data Preprocessing After data collection, the data must be cleaned and structured. Key steps include: LLM Training Loop Key training stages include: Evaluating Your LLM After training, it is crucial to assess the LLM’s performance using industry-standard benchmarks: When fine-tuning LLMs for specific applications, tailor your evaluation metrics to the task. For instance, in healthcare, matching disease descriptions with appropriate codes may be a top priority. Conclusion Building a private LLM provides unmatched customization, enhanced data privacy, and optimized performance. From data curation to model evaluation, this guide has outlined the essential steps to create an LLM tailored to your specific needs. Whether you’re just starting or seeking to refine your skills, building a private LLM can empower your organization with state-of-the-art AI capabilities. For expert guidance or to kickstart your LLM journey, feel free to contact us for a free consultation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Prompts to Accelerate Academic Reading

AI Prompts to Accelerate Academic Reading

10 AI Prompts to Accelerate Academic Reading with ChatGPT and Claude AI In the era of information overload, keeping pace with academic research can feel daunting. Tools like ChatGPT and Claude AI can streamline your reading and help you extract valuable insights from research papers quickly and efficiently. These AI assistants, when used ethically and responsibly, support your critical analysis by summarizing complex studies, highlighting key findings, and breaking down methodologies. While these prompts enhance efficiency, they should complement—never replace—your own critical thinking and thorough reading. AI Prompts for Academic Reading 1. Elevator Pitch Summary Prompt: “Summarize this paper in 3–5 sentences as if explaining it to a colleague during an elevator ride.”This prompt distills the essence of a paper, helping you quickly grasp the core idea and decide its relevance. 2. Key Findings Extraction Prompt: “List the top 5 key findings or conclusions from this paper, with a brief explanation of each.”Cut through jargon to access the research’s core contributions in seconds. 3. Methodology Breakdown Prompt: “Explain the study’s methodology in simple terms. What are its strengths and potential limitations?”Understand the foundation of the research and critically evaluate its validity. 4. Literature Review Assistant Prompt: “Identify the key papers cited in the literature review and summarize each in one sentence, explaining its connection to the study.”A game-changer for understanding the context and building your own literature review. 5. Jargon Buster Prompt: “List specialized terms or acronyms in this paper with definitions in plain language.”Create a personalized glossary to simplify dense academic language. 6. Visual Aid Interpreter Prompt: “Explain the key takeaways from Figure X (or Table Y) and its significance to the study.”Unlock insights from charts and tables, ensuring no critical information is missed. 7. Implications Explorer Prompt: “What are the potential real-world implications or applications of this research? Suggest 3–5 possible impacts.”Connect theory to practice by exploring broader outcomes and significance. 8. Cross-Disciplinary Connections Prompt: “How might this paper’s findings or methods apply to [insert your field]? Suggest potential connections or applications.”Encourage interdisciplinary thinking by finding links between research areas. 9. Future Research Generator Prompt: “Based on the limitations and unanswered questions, suggest 3–5 potential directions for future research.”Spark new ideas and identify gaps for exploration in your field. 10. The Devil’s Advocate Prompt: “Play devil’s advocate: What criticisms or counterarguments could be made against the paper’s main claims? How might the authors respond?”Refine your critical thinking and prepare for discussions or reviews. Additional Resources Generative AI Prompts with Retrieval Augmented GenerationAI Agents and Tabular DataAI Evolves With Agentforce and Atlas Conclusion Incorporating these prompts into your routine can help you process information faster, understand complex concepts, and uncover new insights. Remember, AI is here to assist—not replace—your research skills. Stay critical, adapt prompts to your needs, and maximize your academic productivity. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
Salesforce Flows and LeanData

Salesforce Flows and LeanData

Mastering Opportunity Routing in Salesforce Flows While leads are essential at the top of the funnel, opportunities take center stage as the sales process advances. In Salesforce, the opportunity object acts as a container that can hold multiple contacts tied to a specific deal, making accurate opportunity routing crucial. Misrouting or delays at this stage can significantly impact revenue and forecasting, while manual processing risks incorrect assignments and uneven distribution. Leveraging Salesforce Flows for opportunity routing can help avoid these issues. Salesforce Flows and LeanData. What Is Opportunity Routing? Opportunity routing is the process of assigning open opportunities to the right sales rep based on specific criteria like territory, deal size, industry, or product type. The goal is to ensure every opportunity reaches the right person quickly, maximizing the chance to close the deal. Opportunity routing also helps prioritize high-potential deals, improving pipeline efficiency. Challenges of Manual Routing Manual opportunity routing can lead to several challenges: Benefits of Automating Routing with Salesforce Flows Using Salesforce Flows for opportunity routing offers many benefits: Setting Up Opportunity Routing in Salesforce Flows Here’s an outline for setting up opportunity routing in Salesforce: Managing Complex Salesforce Flows Opportunity routing in Salesforce Flows is powerful, but managing complex sales environments can be challenging: How LeanData Enhances Opportunity Routing LeanData extends Salesforce routing capabilities with advanced, no-code automation and auditing features: Salesforce Flows and LeanData Whether using Salesforce Flows or LeanData, the goal is to optimize time to revenue. While Salesforce Flows offer a robust foundation, organizations without dedicated admins or developers may face challenges in making frequent updates. LeanData provides greater flexibility and real-time automation, helping to streamline the routing process and drive revenue growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com