GitHub Archives - gettectonic.com
llm-d

LLM-D

llm-d is a Kubernetes-native distributed inference serving stack – a well-lit path for anyone to serve large language models at scale, with the fastest time-to-value and competitive performance per dollar for most models across most hardware accelerators. With llm-d, users can operationalize GenAI deployments with a modular solution that leverages the latest distributed inference optimizations like KV-cache aware routing and disaggregated serving, co-designed and integrated with the Kubernetes operational tooling in Inference Gateway (IGW). Built by leaders in the Kubernetes and vLLM projects, llm-d is a community-driven, Apache-2 licensed project with an open development model. 🧱 Architecture llm-d adopts a layered architecture on top of industry-standard open technologies: vLLM, Kubernetes, and Inference Gateway. Key features of llm-d include: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Model Context Protocol

Model Context Protocol

The AI Revolution Has Arrived: Meet MCP, the Protocol Changing Everything Imagine an AI that doesn’t just respond—it understands. It reads your emails, analyzes your databases, knows your business inside out, and acts on live data—all through a single universal standard. That future is here, and it’s called MCP (Model Context Protocol). Already adopted by OpenAI, Google, Microsoft, and more, MCP is about to redefine how we work with AI—forever. No More Copy-Paste AI Picture this: You ask your AI assistant about Q3 performance. Instead of scrambling through spreadsheets, Slack threads, and CRM reports, the AI already knows. It pulls real-time sales figures, checks customer feedback, and delivers a polished analysis—in seconds. This isn’t sci-fi. It’s happening today, thanks to MCP. The Problem With Today’s AI: Isolated Intelligence Most AI models are like geniuses locked in a library—brilliant but cut off from the real world. Every time you copy-paste data into ChatGPT or upload files to Claude, you’re working around a fundamental flaw: AI lacks context. For businesses, deploying AI means endless custom integrations: MCP: The Universal Language for AI Introduced by Anthropic in late 2024, MCP is the USB-C of AI—a single standard connecting any AI to any data source. Here’s how it works: Instead of building N×M connections (every AI × every data source), you build N + M—one integration per AI model and one per data source. MCP in Action: The Future of Work Why MCP Changes Everything The MCP Ecosystem is Exploding In less than a year, MCP has been adopted by: Beyond RAG: Real-Time Knowledge Traditional RAG (Retrieval-Augmented Generation) relies on stale vector databases. MCP changes the game: Security & Governance Built In The Next Frontier: AI Agents & Workflow Automation MCP enables AI agents that don’t just follow scripts—they adapt. The Time to Act is Now MCP isn’t just another API—it’s the foundation for true AI integration. The question isn’t if you’ll adopt it, but how fast. Welcome to the era of connected intelligence. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Code Genie

Salesforce Code Genie

How Salesforce’s Agentforce Is Reshaping Development—Saving 30,000 Hours a Month “AI agents are transforming my role—shifting me from pure technical execution to strategic leadership,” says one Salesforce developer. Instead of spending hours on repetitive tasks like code reviews or debugging, she now focuses on designing scalable architectures, optimizing workflows, and driving innovation. This shift reflects a broader evolution in software development: Developers are becoming AI supervisors, guiding autonomous agents, refining outputs, and ensuring alignment with business goals. Success in this new paradigm requires systems thinking, context management, and strategic oversight—not just coding expertise. Agentforce: The AI-Powered Developer Revolution Salesforce is already leading this transition with Agentforce, its digital labor platform, which has saved 30,000 developer hours per month—equivalent to 15 full-time engineers—by automating routine tasks. Key tools powering this transformation include: Unlike traditional AI coding assistants (which suggest snippets or autocomplete boilerplate), Agentforce agents act autonomously. For example, a developer can simply prompt: “Create a component that calls this API, processes these parameters, and returns success/failure status.” The AI then: The developer’s role? Review, refine, and ensure alignment with broader system goals. CodeGenie: Salesforce’s Internal AI Powerhouse Behind Agentforce lies CodeGenie, Salesforce’s internal AI assistant, built on its proprietary CodeGen model. The results speak for themselves: ✅ 7M+ lines of code accepted✅ 500K+ developer questions answered✅ 30K+ hours saved monthly✅ Seamless integration (IDEs, GitHub, Slack, CLI) “CodeGenie handles repetitive work, freeing me to solve complex problems,” says NaveenKumar Namachivayam, Senior Software Engineer at Salesforce. “It’s like having an expert collaborator—making coding faster, smarter, and more efficient.” Lessons from Salesforce’s AI Journey These insights don’t just benefit Salesforce—they directly shape Agentforce’s external offerings. CodeGenie’s success, for example, informed Agentforce for Developers, ensuring enterprise users get battle-tested AI assistance. The Bottom Line: AI Won’t Replace Developers—It Will Elevate Them Just as cloud computing didn’t kill IT jobs, AI won’t make developers obsolete—it will redefine their roles. The future belongs to those who: 🔹 Embrace AI as a force multiplier🔹 Shift from writing code to orchestrating AI agents🔹 Focus on architecture, strategy, and innovation For organizations, this demands investment in training, culture, and tools that empower teams to lead in the agentic era. The message is clear: Developers who adapt will thrive—not as coders, but as AI-powered strategists. Salesforce’s Agentforce is proving it’s possible today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Slack Operating System

Agentforce in Slack

Agentforce in Slack: Elevating Engineering Productivity at Salesforce At Salesforce, we’ve proven that engineers do scale—when you remove the bottlenecks. The real challenge isn’t engineering talent; it’s the endless hunt for context. As teams expand, so does the time wasted searching for knowledge, switching between tools, and answering repetitive questions. Enter the Engineering Agent—a game-changing digital teammate built on Agentforce and deployed directly in Slack, where our engineers already collaborate. Integrated with Data Cloud, MuleSoft, and Heroku, this AI-powered assistant delivers instant, reliable support—whether answering technical questions, automating tests, or streamlining onboarding. The result? Engineers spend less time chasing information and more time building what matters. The Impact: Support Where Engineers Need It Most Senior engineers once spent 10+ minutes per support request—time better spent on high-value work. Now, the Engineering Agent in Slack serves as the first point of contact, providing instant answers in channels or DMs, 24/7. But it doesn’t stop there. Our agent acts as an “agent of agents”—intelligently routing questions to specialized sub-agents for precise, domain-specific responses. Each answer includes cited sources and relevant links, making knowledge access seamless without disrupting teammates. To ensure accuracy, the Engineering Agent continuously ingests structured and unstructured data from Slack, Confluence, GitHub, Google Docs, and more, with daily refreshes keeping responses up to date. Beyond Answers: Automating Workflows The Engineering Agent doesn’t just talk—it takes action. By orchestrating tasks via MuleSoft, it automates processes like: This reduces friction, accelerates workflows, and keeps engineers focused. The Future: Scaling Impact Today, the Engineering Agent supports 3,500+ users across 700+ Slack channels. As we expand from 18 to 30–40 specialized agents, we project: For Salesforce, Agentforce isn’t just a tool—it’s an always-on teammate. By embedding AI directly in Slack, we’ve transformed support, optimized workflows, and unlocked engineering potential. The Takeaway:For enterprises looking to boost productivity, modernize support, and empower engineers, deploying AI agents in Slack isn’t just smart—it’s essential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Google and Salesforce Expand Partnership

Google Unveils Agent2Agent (A2A)

Google Unveils Agent2Agent (A2A): An Open Protocol for AI Agents to Collaborate Directly Google has introduced the Agent2Agent Protocol (A2A), a new open standard that enables AI agents to communicate and collaborate seamlessly—regardless of their underlying framework, developer, or deployment environment. If the Model Context Protocol (MCP) gave agents a structured way to interact with tools, A2A takes it a step further by allowing them to work together as a team. This marks a significant step toward standardizing how autonomous AI systems operate in real-world scenarios. Key Highlights: How A2A Works Think of A2A as a universal language for AI agents—it defines how they: Crucially, A2A is designed for enterprise use from the ground up, with built-in support for:✔ Authentication & security✔ Push notifications & streaming updates✔ Human-in-the-loop workflows Why This Matters A2A could do for AI agents what HTTP did for the web—eliminating vendor lock-in and enabling businesses to mix-and-match agents across HR, CRM, and supply chain systems without custom integrations. Google likens the relationship between A2A and MCP to mechanics working on a car: Designed for Enterprise Security & Flexibility A2A supports opaque agents (those that don’t expose internal logic), making it ideal for secure, modular enterprise deployments. Instead of syncing internal states, agents share context via structured “Tasks”, which include: Communication happens via standard formats like HTTP, JSON-RPC, and SSE for real-time streaming. Available Now—With More to Come The initial open-source spec is live on GitHub, with SDKs, sample agents, and integrations for frameworks like: Google is inviting community contributions ahead of a production-ready 1.0 release later this year. The Bigger Picture If A2A gains widespread adoption—as its strong early backing suggests—it could accelerate the AI agent ecosystem much like Kubernetes did for cloud apps or OAuth for secure access. By solving interoperability at the protocol level, A2A paves the way for businesses to deploy a cohesive digital workforce composed of diverse, specialized agents. For enterprises future-proofing their AI strategy, A2A is a development worth watching closely. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Is AI Replacing Developers

Is AI Replacing Developers? The Truth About AI-Generated Code Anthropic’s CEO predicts AI will write 90% of code within 3 to 6 years. Google already reports 25% of its code is AI-generated. With numbers like these, it’s tempting to wonder: Are developers becoming obsolete? The short answer? No. Here’s why—and what AI-generated code actually means for software development. 1. AI Isn’t Replacing Developer Work—It’s Changing It Just because AI writes code doesn’t mean developers do less. AI doesn’t eliminate developer effort—it shifts it. 2. AI Writes More Code Than Necessary (And That’s a Problem) AI doesn’t know when to stop. More AI-generated code ≠ better software. In fact, poorly managed AI code can make apps harder to maintain. 3. Developers Have Always Relied on External Code Before AI, developers used: AI is just another tool—like a smarter Stack Overflow. The Worst Mistakes Companies Can Make with AI Code ❌ Setting Arbitrary “AI Code %” Targets ❌ Assuming AI Reduces the Need for Developers ❌ Ignoring AI’s Blind Spots The Future: AI as a Developer’s Co-Pilot The bottom line? AI is changing coding—not eliminating it. Developers who embrace AI as a tool will stay ahead. Those who fear it will fall behind. Key Takeaways:✔ AI generates code, but developers still design, debug, and refine it.✔ Blindly trusting AI leads to bloated, buggy software.✔ The best developers use AI to augment—not replace—their skills.✔ Companies should encourage AI adoption—not mandate arbitrary AI code quotas. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents and Consumer Trust

AI and the Future of Software Development

Beyond Coding: Why Agency Matters More in the AI Era For years, “learn to code” was the go-to advice for breaking into tech. But Jayesh Govindarajan, EVP and Head of AI Engineering at Salesforce, believes there’s now a more valuable skill: agency. “I may be in the minority here, but I think something that’s far more essential than learning how to code is having agency,” Govindarajan shared in a recent Business Insider interview. The Shift from Coding to Problem-Solving Govindarajan’s perspective reflects how AI is reshaping software development. He explains that while AI-powered systems can solve complex problems, they still need humans to define the problems worth solving. “We’re building a system that can pretty much solve anything for you—but it just doesn’t know what to solve.” This is where agency becomes critical. Instead of focusing solely on coding, the real skill lies in identifying problems, leveraging AI tools, and iterating solutions. No-Code AI: A New Way to Build Solutions To illustrate this, Govindarajan offered a real-world example involving College Possible, a nonprofit helping students prepare for college. “No code. You’d give it instructions in English. That’s very possible,” Govindarajan explained. The Two Skills That Matter Most Through this process, the individual demonstrates two key abilities: In this model, experienced coders still play a role—fine-tuning the final product once a solution proves viable. But the initial value comes from problem-solving and iteration, not traditional coding expertise. AI and the Future of Software Development The rise of AI-powered coding tools like GitHub Copilot and Amazon CodeWhisperer has automated many programming tasks, reshaping the industry. With AI handling much of the technical heavy lifting, the demand for critical thinking, adaptability, and problem identification is increasing. Soft Skills: The New Differentiator? Industry leaders are recognizing that technical skills alone aren’t enough. Mark Zuckerberg emphasized this in a July Bloomberg interview: “The most important skill is learning how to think critically and learning values when you’re young.” He argued that those who can go deep, master a skill, and apply that knowledge to new areas will thrive—regardless of their coding expertise. The Takeaway: Get Stuff Done Govindarajan’s message is clear: The future belongs to those who take initiative, leverage AI effectively, and focus on solving real-world problems—not just those who can code. Or, as he might put it: use the tools at your disposal to get stuff done. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ai agents

AI Agents

What AI Agents Are Available on the Market? Limitations of Operator, Computer Use, and Similar Agents OpenAI Operator can be seen as a semi-autonomous agent, but many users note that it asks too many questions and requires excessive confirmations, even in situations that pose no risk:“Operator is like driving a car with cruise control — occasionally taking your foot off the pedals — but it’s far from full-blown autopilot.” Furthermore, although Operator is technically designed to interact with any website, in reality, it’s far from a universal solution. It works reliably on a predefined set of platforms for tasks like shopping and restaurant reservations (such as Instacart and OpenTable), where its functionality has been tested. But outside of these, its performance is inconsistent — sometimes even generating incorrect or entirely fabricated data. Google’s Project Mariner, which aims to offer similar capabilities within Chrome, remains in closed beta for now. Meanwhile, many are eagerly anticipating a consumer product from Claude, which released the API for its Claude Computer Use agent (built on a slightly different principles) back in October 2024. One thing seems certain, though — it will be even more “cautious” than Operator, meaning it’s unlikely to handle tasks like sending emails or posting on social media on your behalf. Thus, browser-based agents come with at least two key limitations:— they work reliably only on a predefined set of websites;— certain actions are prohibited (for example, allowing an agent to send emails autonomously could create conflicts between its owner and others). Mobile agents face similar constraints. Take Perplexity Assistant, one of the earliest attempts at a “versatile” mobile AI agent — it still supports only a limited range of apps where it can operate on behalf of the user. Deep Research Agents To highlight the contrast, let’s look at AI agents built specifically for deep research. This category has seen a surge in new tools recently, and they deliver significantly better results than standard AI-powered web search. Deep Research tools qualify as AI agents due to their high level of autonomy. At this stage, no truly agentic tool exists that can handle any problem on our behalf — even in a semi-autonomous mode, let alone a fully autonomous one. However, there are highly effective agents within specific domains, such as deep research agents. With that in mind, let’s categorize typical AI applications into several groups (use cases) and tackle the following question for each group. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Integrating Google’s Agent Assist with Salesforce & Twilio Flex

Overview This guide walks through integrating Google’s Agent Assist with Salesforce using Twilio Flex as the call center platform. The setup enables real-time AI-powered agent suggestions during voice calls by streaming conversation data to Agent Assist. Key Components Prerequisites Before starting, ensure you have: ✅ Node.js v18.20.4 (Node 20.x has compatibility issues)✅ Salesforce CLI (Install via npm install -g @salesforce/cli)✅ Google Cloud CLI (gcloud auth login)✅ Salesforce Access (Note your My Domain URL and Org ID)✅ Twilio Flex Account Step 1: Configure Twilio Flex 1. Install the SIPREC Connector 2. Set Up IVR in Twilio Studio Step 2: Set Up the Development Project Step 3: Configure Salesforce 1. Deploy the Lightning Web Component (LWC) 2. Create a Connected App 3. Set Up CORS & Trusted URLs Step 4: Install Twilio Flex CTI in Salesforce Follow Twilio’s Flex CTI setup guide to embed Flex in Salesforce. Step 5: Add Agent Assist to Salesforce Console Step 6: Test the Integration Conclusion This integration enables AI-powered agent assistance directly in Salesforce, leveraging Twilio Flex for call handling and Google’s Agent Assist for real-time insights. 🔗 GitHub Repo: Agent Assist Integrations🔗 Twilio Flex CTI Docs: Salesforce Integration Guide For troubleshooting, refer to the Google Cloud documentation or contact support. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents

AI Agents in Action: Real-World Applications

The true potential of AI agents lies in their practical use across industries. Let’s explore how different sectors are leveraging AI agents to solve real challenges. Software Development The shift from simple code completion to autonomous software development highlights AI’s expanding role in engineering. While GitHub Copilot introduced real-time coding assistance in 2021, today’s AI agents—like Devin—can manage end-to-end development, from setting up environments to deployment. Multi-agent frameworks, such as MetaGPT, showcase how specialized AI agents collaborate effectively: While AI agents lack human limitations, this shift raises fundamental questions about development practices shaped over decades. AI excels at tasks like prototyping and automated testing, but the true opportunity lies in rethinking software development itself—not just making existing processes faster. This transformation is already affecting hiring trends. Salesforce, for example, announced it will not hire new software engineers in 2025, citing a 30% productivity increase from AI-driven development. Meanwhile, Meta CEO Mark Zuckerberg predicts that by 2025, AI will reach the level of mid-level software engineers, capable of generating production-ready code. However, real-world tests highlight limitations. While Devin performs well on isolated tasks like API integrations, it struggles with complex development projects. In one evaluation, Devin successfully completed only 3 out of 20 full-stack tasks. In contrast, developer-driven workflows using tools like Cursor have proven more reliable, suggesting that AI agents are best used as collaborators rather than full replacements. Customer Service The evolution from basic chatbots to sophisticated AI service agents marks one of the most successful AI deployments to date. Research by Sierra shows that modern AI agents can handle complex tasks—such as flight rebookings and multi-step refunds—previously requiring multiple human agents, all while maintaining natural conversation flow. Key capabilities include: However, challenges remain, particularly in handling policy exceptions and emotionally sensitive situations. Many companies address this by limiting AI agents to approved knowledge sources and implementing clear escalation protocols. The most effective approach in production environments has been a hybrid model, where AI agents handle routine tasks and escalate complex cases to human staff. Sales & Marketing AI agents are now playing a critical role in structured sales and marketing workflows, such as lead qualification, meeting scheduling, and campaign analytics. These agents integrate seamlessly with CRM platforms and communication tools while adhering to business rules. For example, Salesforce’s Agentforce processes customer interactions, maintains conversation history, and escalates complex inquiries when necessary. 1. Sales Development 2. Marketing Operations Core capabilities: However, implementing AI in sales and marketing presents challenges: A hybrid approach—where AI manages routine tasks and data-driven decisions while humans focus on relationship-building and strategy—has proven most effective. Legal Services AI agents are also transforming the legal industry by processing complex documents and maintaining compliance across jurisdictions. Systems like Harvey can break down multi-month projects, such as S-1 filings, into structured workflows while ensuring regulatory compliance. Key capabilities: However, AI-assisted legal work faces significant challenges. Validation and liability remain critical concerns—AI-generated outputs require human review, and the legal responsibility for AI-assisted decisions is still unresolved. While AI excels at document processing and legal research, strategic decisions remain firmly in human hands. Final Thoughts Across industries, AI agents are proving their value in automation, efficiency, and data-driven decision-making. However, fully autonomous systems are not yet replacing human expertise—instead, the most successful implementations involve AI-human collaboration, where agents handle repetitive tasks while humans oversee complex decision-making. As AI technology continues to evolve, businesses must strike the right balance between automation, control, and human oversight to maximize its potential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Shift From AI Agents to AI Agent Tool Use

AI Agent Dilemma

The AI Agent Dilemma: Hype, Confusion, and Competing Definitions Silicon Valley is all in on AI agents. OpenAI CEO Sam Altman predicts they will “join the workforce” this year. Microsoft CEO Satya Nadella envisions them replacing certain knowledge work. Meanwhile, Salesforce CEO Marc Benioff has set an ambitious goal: making Salesforce the “number one provider of digital labor in the world” through its suite of AI-driven agentic services. But despite the enthusiasm, there’s little consensus on what an AI agent actually is. In recent years, tech leaders have hailed AI agents as transformative—just as AI chatbots like OpenAI’s ChatGPT redefined information retrieval, agents, they claim, will revolutionize work. That may be true. But the problem lies in defining what an “agent” really is. Much like AI buzzwords such as “multimodal,” “AGI,” or even “AI” itself, the term “agent” is becoming so broad that it risks losing all meaning. This ambiguity puts companies like OpenAI, Microsoft, Salesforce, Amazon, and Google in a tricky spot. Each is investing heavily in AI agents, but their definitions—and implementations—differ wildly. An Amazon agent is not the same as a Google agent, leading to confusion and, increasingly, customer frustration. Even industry insiders are growing weary of the term. Ryan Salva, senior director of product at Google and former GitHub Copilot leader, openly criticizes the overuse of “agents.” “I think our industry has stretched the term ‘agent’ to the point where it’s almost nonsensical,” Salva told TechCrunch. “[It is] one of my pet peeves.” A Definition in Flux The struggle to define AI agents isn’t new. Former TechCrunch reporter Ron Miller raised the question last year: What exactly is an AI agent? The challenge is that every company building them has a different answer. That confusion only deepened this past week. OpenAI published a blog post defining agents as “automated systems that can independently accomplish tasks on behalf of users.” Yet in its developer documentation, it described agents as “LLMs equipped with instructions and tools.” Adding to the inconsistency, OpenAI’s API product marketing lead, Leher Pathak, stated on X (formerly Twitter) that she sees “assistants” and “agents” as interchangeable—further muddying the waters. Microsoft attempts to make a distinction, describing agents as “the new apps” for an AI-powered world, while reserving “assistant” for more general task helpers like email drafting tools. Anthropic takes a broader approach, stating that agents can be “fully autonomous systems that operate independently over extended periods” or simply “prescriptive implementations that follow predefined workflows.” Salesforce, meanwhile, has perhaps the widest-ranging definition, describing agents as AI-driven systems that can “understand and respond to customer inquiries without human intervention.” It categorizes them into six types, from “simple reflex agents” to “utility-based agents.” Why the Confusion? The nebulous nature of AI agents is part of the problem. These systems are still evolving, and major players like OpenAI, Google, and Perplexity have only just begun rolling out their first versions—each with vastly different capabilities. But history also plays a role. Rich Villars, GVP of worldwide research at IDC, points out that tech companies have “a long history” of using flexible definitions for emerging technologies. “They care more about what they are trying to accomplish on a technical level,” Villars told TechCrunch, “especially in fast-evolving markets.” Marketing is another culprit. Andrew Ng, founder of DeepLearning.ai, argues that the term “agent” once had a clear technical meaning—until marketers and a few major companies co-opted it. The Double-Edged Sword of Ambiguity The lack of a standardized definition presents both opportunities and challenges. Jim Rowan, head of AI at Deloitte, notes that while the ambiguity allows companies to tailor agents to specific needs, it also leads to “misaligned expectations” and difficulty in measuring value and ROI. “Without a standardized definition, at least within an organization, it becomes challenging to benchmark performance and ensure consistent outcomes,” Rowan explains. “This can result in varied interpretations of what AI agents should deliver, potentially complicating project goals and results.” While a clearer framework for AI agents would help businesses maximize their investments, history suggests that the industry is unlikely to agree on a single definition—just as it never fully defined “AI” itself. For now, AI agents remain both a promising innovation and a marketing-driven enigma. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Generative AI in Marketing

Generative AI in Marketing

Generative Artificial Intelligence (GenAI) continues to reshape industries, providing product managers (PMs) across domains with opportunities to embrace AI-focused innovation and enhance their technical expertise. Over the past few years, GenAI has gained immense popularity. AI-enabled products have proliferated across industries like a rapidly expanding field of dandelions, fueled by abundant venture capital investment. From a product management perspective, AI offers numerous ways to improve productivity and deepen strategic domain knowledge. However, the fundamentals of product management remain paramount. This discussion underscores why foundational PM practices continue to be indispensable, even in the evolving landscape of GenAI, and how these core skills can elevate PMs navigating this dynamic field. Why PM Fundamentals Matter, AI or Not Three core reasons highlight the enduring importance of PM fundamentals and actionable methods for excelling in the rapidly expanding GenAI space. 1. Product Development is Inherently Complex While novice PMs might assume product development is straightforward, the reality reveals a web of interconnected and dynamic elements. These may include team dependencies, sales and marketing coordination, internal tooling managed by global teams, data telemetry updates, and countless other tasks influencing outcomes. A skilled product manager identifies and orchestrates these moving pieces, ensuring product growth and delivery. This ability is often more impactful than deep technical AI expertise (though having both is advantageous). The complexity of modern product development is further amplified by the rapid pace of technological change. Incorporating AI tools such as GitHub Copilot can accelerate workflows but demands a strong product culture to ensure smooth integration. PMs must focus on fundamentals like understanding user needs, defining clear problems, and delivering value to avoid chasing fleeting AI trends instead of solving customer problems. While AI can automate certain tasks, it is limited by costs, specificity, and nuance. A PM with strong foundational knowledge can effectively manage these limitations and identify areas for automation or improvement, such as: 2. Interpersonal Skills Are Irreplaceable As AI product development grows more complex, interpersonal skills become increasingly critical. PMs work with diverse teams, including developers, designers, data scientists, marketing professionals, and executives. While AI can assist in specific tasks, strong human connections are essential for success. Key interpersonal abilities for PMs include: Stakeholder management remains a cornerstone of effective product management. PMs must build trust and tailor their communication to various audiences—a skill AI cannot replicate. 3. Understanding Vertical Use Cases is Essential Vertical use cases focus on niche, specific tasks within a broader context. In the GenAI ecosystem, this specificity is exemplified by AI agents designed for narrow applications. For instance, Microsoft Copilot includes a summarization agent that excels at analyzing Word documents. The vertical AI market has experienced explosive growth, valued at .1 billion in 2024 and projected to reach .1 billion by 2030. PMs are crucial in identifying and validating these vertical use cases. For example, the team at Planview developed the AI Assistant “Planview Copilot” by hypothesizing specific use cases and iteratively validating them through customer feedback and data analysis. This approach required continuous application of fundamental PM practices, including discovery, prioritization, and feedback internalization. PMs must be adept at discovering vertical use cases and crafting strategies to deliver meaningful solutions. Key steps include: Conclusion Foundational product management practices remain critical, even as AI transforms industries. These core skills ensure that PMs can navigate the challenges of GenAI, enabling organizations to accelerate customer value in work efficiency, time savings, and quality of life. By maintaining strong fundamentals, PMs can lead their teams to thrive in an AI-driven future. AI Agents on Madison Avenue: The New Frontier in Advertising AI agents, hailed as the next big advancement in artificial intelligence, are making their presence felt in the world of advertising. Startups like Adaly and Anthrologic are introducing personalized AI tools designed to boost productivity for advertisers, offering automation for tasks that are often time-consuming and tedious. Retail brands such as Anthropologie are already adopting this technology to streamline their operations. How AI Agents WorkIn simple terms, AI agents operate like advanced AI chatbots. They can handle tasks such as generating reports, optimizing media budgets, or analyzing data. According to Tyler Pietz, CEO and founder of Anthrologic, “They can basically do anything that a human can do on a computer.” Big players like Salesforce, Microsoft, Anthropic, Google, and Perplexity are also championing AI agents. Perplexity’s CEO, Aravind Srinivas, recently suggested that businesses will soon compete for the attention of AI agents rather than human customers. “Brands need to get comfortable doing this,” he remarked to The Economic Times. AI Agents Tailored for Advertisers Both Adaly and Anthrologic have developed AI software specifically trained for advertising tasks. Built on large language models like ChatGPT, these platforms respond to voice and text prompts. Advertisers can train these AI systems on internal data to automate tasks like identifying data discrepancies or analyzing economic impacts on regional ad budgets. Pietz noted that an AI agent can be set up in about a month and take on grunt work like scouring spreadsheets for specific figures. “Marketers still log into 15 different platforms daily,” said Kyle Csik, co-founder of Adaly. “When brands in-house talent, they often hire people to manage systems rather than think strategically. AI agents can take on repetitive tasks, leaving room for higher-level work.” Both Pietz and Csik bring agency experience to their ventures, having crossed paths at MediaMonks. Industry Response: Collaboration, Not Replacement The targets for these tools differ: Adaly focuses on independent agencies and brands, while Anthrologic is honing in on larger brands. Meanwhile, major holding companies like Omnicom and Dentsu are building their own AI agents. Omnicom, on the verge of merging with IPG, has developed internal AI solutions, while Dentsu has partnered with Microsoft to create tools like Dentsu DALL-E and Dentsu-GPT. Havas is also developing its own AI agent, according to Chief Activation Officer Mike Bregman. Bregman believes AI tools won’t immediately threaten agency jobs. “Agencies have a lot of specialization that machines can’t replace today,” he said. “They can streamline processes, but

Read More
No-Code Generative AI

Generative-Driven Development

Nowhere has the rise of generative AI tools been more transformative than in software development. It began with GitHub Copilot’s enhanced autocomplete, which then evolved into interactive, real-time coding assistants like Aider and Cursor that allow engineers to dictate changes and see them applied live in their editor. Today, platforms like Devin.ai aim even higher, aspiring to create autonomous software systems capable of interpreting feature requests or bug reports and delivering ready-to-review code. At its core, the ambition of these AI tools mirrors the essence of software itself: to automate human work. Whether you were writing a script to automate CSV parsing in 2005 or leveraging AI today, the goal remains the same—offloading repetitive tasks to machines. What makes generative AI tools distinct, however, is their focus on automating the work of automation itself. Framing this as a guiding principle enables us to consider the broader challenges and opportunities generative AI brings to software development. Automate the Process of Automation The Doctor-Patient Strategy Most contemporary generative AI tools operate under what can be called the Doctor-Patient strategy. In this model, the GenAI tool acts on a codebase as a distinct, external entity—much like a doctor treats a patient. The relationship is one-directional: the tool modifies the codebase based on given instructions but remains isolated from the architecture and decision-making processes within it. Why This Strategy Dominates: However, the limitations of this strategy are becoming increasingly apparent. Over time, the unidirectional relationship leads to bot rot—the gradual degradation of code quality due to poorly contextualized, repetitive, or inconsistent changes made by generative AI. Understanding Bot Rot Bot rot occurs when AI tools repeatedly make changes without accounting for the macro-level architecture of a codebase. These tools rely on localized context, often drawing from semantically similar code snippets, but lack the insight needed to preserve or enhance the overarching structure. Symptoms of Bot Rot: Example:Consider a Python application that parses TPS report IDs. Without architectural insight, a code bot may generate redundant parsing methods across multiple modules rather than abstracting the logic into a centralized model. Over time, this duplication compounds, creating a chaotic and inefficient codebase. A New Approach: Generative-Driven Development (GDD) To address the flaws of the Doctor-Patient strategy, we propose Generative-Driven Development (GDD), a paradigm where the codebase itself is designed to enable generative AI to enhance automation iteratively and sustainably. Pillars of GDD: How GDD Improves the Development Lifecycle Under GDD, the traditional Test-Driven Development (TDD) cycle (red, green, refactor) evolves to integrate AI processes: This complete cycle eliminates the gaps present in current generative workflows, reducing bot rot and enabling sustainable automation. Over time, GDD-based codebases become easier to maintain and automate, reducing error rates and cycle times. A Day in the Life of a GDD Engineer Imagine a GDD-enabled workflow for a developer tasked with updating TPS report parsing: By embedding AI into the development process, GDD empowers engineers to focus on high-level decision-making while ensuring the automation process remains sustainable and aligned with architectural goals. Conclusion Generative-Driven Development represents a significant shift in how we approach software development. By prioritizing architecture, embedding automation into the software itself, and writing GenAI-optimized code, GDD offers a sustainable path to achieving the ultimate goal: automating the process of automation. As AI continues to reshape the industry, adopting GDD will be critical to harnessing its full potential while avoiding the pitfalls of bot rot. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentforce Custom AI Agents

Understanding AI Agents

Understanding AI Agents: How They Differ from Copilots and Assistants The AI landscape is evolving rapidly, with terms like AI agents, copilots, and assistants often used interchangeably. But what truly distinguishes them? This analysis clarifies their differences, maps them against real-world AI tools, and identifies gaps in today’s market. Why This Distinction Matters Understanding AI agent capabilities is crucial for: By 2025, AI agents are expected to become enterprise-ready, with the market projected to grow 45% annually, reaching $47 billion by 2030 (MarketsandMarkets). Microsoft CEO Satya Nadella even suggests that agentic applications could replace traditional SaaS. But what makes an AI tool an agent rather than just a copilot or assistant? Defining AI Agents, Copilots, and Assistants 1. AI Agents: Autonomous Goal-Seekers Gartner’s definition (2024): “AI agents are autonomous or semi-autonomous software entities that use AI techniques to perceive, make decisions, take actions, and achieve goals in their digital or physical environments.” Key capabilities:✔ Autonomy – Acts independently.✔ Goal-driven behavior – Works toward broader objectives.✔ Environmental interaction – Uses tools (actions), sensors (perception), and data retrieval.✔ Learning & memory – Adapts over time.✔ Proactivity – Acts on triggers, not just user commands. Example: Agentforce (Salesforce’s AI agent) autonomously creates marketing campaigns by analyzing CRM data. 2. AI Copilots: Collaborative Partners Microsoft’s perspective: “Copilots enhance decision-making by offering context-specific recommendations and work collaboratively with humans.” Key differences from agents: Example: Cursor (AI coding assistant) helps developers by auto-completing and refining code in real time. 3. AI Assistants: Task-Based Helpers Example: ChatGPT (basic version) answers questions but doesn’t autonomously execute tasks. The Agent-Copilot-Assistant Spectrum Feature AI Assistant AI Copilot AI Agent Autonomy ❌ No ⚠️ Semi ✅ Yes Goal-driven ❌ No ⚠️ Partial ✅ Yes Tools & Actions ❌ No ⚠️ Limited ✅ Yes Sensors/Triggers ❌ No ❌ No ✅ Yes Memory & Learning ❌ No ✅ Yes ✅ Yes Proactivity ❌ No ⚠️ Some ✅ Yes Current Market Gaps: Where AI Tools Fall Short Despite advancements, most AI tools today don’t fully meet agent or copilot criteria: 1. Most “Agents” Lack True Autonomy 2. Copilots Often Lack Memory 3. Assistants Dominate the Market Many popular AI tools (Grammarly, Canva AI, Remove.bg) are task-specific assistants, not true copilots or agents. The Future of AI Agents & Copilots Key Takeaways ✔ AI agents act autonomously, copilots collaborate, and assistants follow commands.✔ Today’s “agents” are semi-autonomous—true autonomy is still evolving.✔ Most AI tools are still assistants, with only a few (like GitHub Copilot) qualifying as copilots.✔ Memory, proactivity, and sensors are the biggest gaps in current AI offerings. For businesses and developers, this presents an opportunity: those who build true copilots and safe agents will lead the next wave of AI adoption. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com