GitHub Archives - gettectonic.com
Scope of Generative AI

Exploring Generative AI

Like most employees at most companies, I wear a few different hats around Tectonic. Whether I’m building a data model, creating and scheduing an email campaign, standing up a platform generative AI is always at my fingertips. At my very core, I’m a marketer. Have been for so long I do it without eveven thinking. Or at least, everyuthing I do has a hat tip to its future marketing needs. Today I want to share some of the AI content generators I’ve been using, am looking to use, or just heard about. But before we rip into the insight, here’s a primer. Types of AI Content Generators ChatGPT, a powerful AI chatbot, drew significant attention upon its November 2022 release. While the GPT-3 language model behind it had existed for some time, ChatGPT made this technology accessible to nontechnical users, showcasing how AI can generate content. Over two years later, numerous AI content generators have emerged to cater to diverse use cases. This rapid development raises questions about the technology’s impact on work. Schools are grappling with fears of plagiarism, while others are embracing AI. Legal debates about copyright and digital media authenticity continue. President Joe Biden’s October 2023 executive order addressed AI’s risks and opportunities in areas like education, workforce, and consumer privacy, underscoring generative AI’s transformative potential. What is AI-Generated Content? AI-generated content, also known as generative AI, refers to algorithms that automatically create new content across digital media. These algorithms are trained on extensive datasets and require minimal user input to produce novel outputs. For instance, ChatGPT sets a standard for AI-generated content. Based on GPT-4o, it processes text, images, and audio, offering natural language and multimodal capabilities. Many other generative AI tools operate similarly, leveraging large language models (LLMs) and multimodal frameworks to create diverse outputs. What are the Different Types of AI-Generated Content? AI-generated content spans multiple media types: Despite their varied outputs, most generative AI systems are built on advanced LLMs like GPT-4 and Google Gemini. These multimodal models process and generate content across multiple formats, with enhanced capabilities evolving over time. How Generative AI is Used Generative AI applications span industries: These tools often combine outputs from various media for complex, multifaceted projects. AI Content Generators AI content generators exist across various media. Below are good examples organized by gen ai type: Written Content Generators Image Content Generators Music Content Generators Code Content Generators Other AI Content Generators These tools showcase how AI-powered content generation is revolutionizing industries, making content creation faster and more accessible. I do hope you will comment below on your favorites, other AI tools not showcased above, or anything else AI-related that is on your mind. Written by Tectonic’s Marketing Operations Director, Shannan Hearne. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
What is Heroku

What is Heroku

What is Heroku? Heroku is a modern, container-based Platform as a Service (PaaS) that enables developers to deploy, manage, and scale applications with ease. Designed for simplicity, flexibility, and elegance, it provides the fastest path for developers to take their apps to market. Key Features of Heroku: The Evolution of Heroku Heroku has recently undergone a transformation, becoming fully cloud-native with advanced integrations like Kubernetes, OpenTelemetry, and Agentforce, an AI-powered enhancement to its platform. These upgrades retain the platform’s hallmark simplicity while delivering more performance and tools, such as Graviton processors, EKS, ECR, and AWS Global Accelerator. AI-Powered Innovation: Agentforce Agentforce, Heroku’s latest feature, brings AI-powered automation to app development. It empowers both technical and non-technical users by offering natural language workflows for building applications, making it accessible to a wider range of business users. According to Betty Junod, Heroku’s Chief Marketing Officer at Salesforce, the platform now seamlessly combines user-friendly experiences with cutting-edge AI capabilities: “We’ve replatformed while keeping the experience as simple as ever, but now with added horsepower, Graviton performance, and managed AI tools like Bedrock.” Agentforce is particularly impactful for non-developers, guiding them through building apps and automating processes with no-code or low-code tools. This innovation aligns with Heroku’s mission to make app creation easier and more interactive: “It’s not just apps serving information anymore; users are engaging with them in entirely new ways.” Deliver Apps, Your Way Heroku is designed to serve a variety of needs, from quick prototypes to mission-critical enterprise applications. Its fully managed ecosystem allows you to build and scale apps efficiently, leveraging the tools and languages you already know and love. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Research Agents

AI Research Agents

AI Research Agents: Transforming Knowledge Discovery by 2025 (Plus the Top 3 Free Tools) The research world is on the verge of a groundbreaking shift, driven by the evolution of AI research agents. By 2025, these agents are expected to move beyond being mere tools to becoming transformative assets for knowledge discovery, revolutionizing industries such as marketing, science, and beyond. Human researchers are inherently limited—they cannot scan 10,000 websites in an hour or analyze data at lightning speed. AI agents, however, are purpose-built for these tasks, providing efficiency and insights far beyond human capabilities. Here, we explore the anticipated impact of AI research agents and highlight three free tools redefining this space (spoiler alert: it’s not ChatGPT or Perplexity!). AI Research Agents: The New Era of Knowledge Exploration By 2030, the AI research market is projected to skyrocket from .1 billion in 2024 to .1 billion. This explosive growth represents not just advancements in AI but a fundamental transformation in how knowledge is gathered, analyzed, and applied. Unlike traditional AI systems, which require constant input and supervision, AI research agents function more like dynamic research assistants. They adapt their approach based on outcomes, handle vast quantities of data, and generate actionable insights with remarkable precision. Key Differentiator: These agents leverage advanced Retrieval Augmented Generation (RAG) technology, ensuring accuracy by pulling verified data from trusted sources. Equipped with anti-hallucination algorithms, they maintain factual integrity while citing their sources—making them indispensable for high-stakes research. The Technology Behind AI Research Agents AI research agents stand out due to their ability to: For example, an AI agent can deliver a detailed research report in 30 minutes, a task that might take a human team days. Why AI Research Agents Matter Now The timing couldn’t be more critical. The volume of data generated daily is overwhelming, and human researchers often struggle to keep up. Meanwhile, Google’s focus on Experience, Expertise, Authoritativeness, and Trustworthiness (EEAT) has heightened the demand for accurate, well-researched content. Some research teams have already reported time savings of up to 70% by integrating AI agents into their workflows. Beyond speed, these agents uncover perspectives and connections often overlooked by human researchers, adding significant value to the final output. Top 3 Free AI Research Tools 1. Stanford STORM Overview: STORM (Synthesis of Topic Outlines through Retrieval and Multi-perspective Question Asking) is an open-source system designed to generate comprehensive, Wikipedia-style articles. Learn more: Visit the STORM GitHub repository. 2. CustomGPT.ai Researcher Overview: CustomGPT.ai creates highly accurate, SEO-optimized long-form articles using deep Google research or proprietary databases. Learn more: Access the free Streamlit app for CustomGPT.ai. 3. GPT Researcher Overview: This open-source agent conducts thorough research tasks, pulling data from both web and local sources to produce customized reports. Learn more: Visit the GPT Researcher GitHub repository. The Human-AI Partnership Despite their capabilities, AI research agents are not replacements for human researchers. Instead, they act as powerful assistants, enabling researchers to focus on creative problem-solving and strategic thinking. Think of them as tireless collaborators, processing vast amounts of data while humans interpret and apply the findings to solve complex challenges. Preparing for the AI Research Revolution To harness the potential of AI research agents, researchers must adapt. Universities and organizations are already incorporating AI training into their programs to prepare the next generation of professionals. For smaller labs and institutions, these tools present a unique opportunity to level the playing field, democratizing access to high-quality research capabilities. Looking Ahead By 2025, AI research agents will likely reshape the research landscape, enabling cross-disciplinary breakthroughs and empowering researchers worldwide. From small teams to global enterprises, the benefits are immense—faster insights, deeper analysis, and unprecedented innovation. As with any transformative technology, challenges remain. But the potential to address some of humanity’s biggest problems makes this an AI revolution worth embracing. Now is the time to prepare and make the most of these groundbreaking tools. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI in Programming

AI in Programming

Since the launch of ChatGPT in 2022, developers have been split into two camps: those who ban AI in coding and those who embrace it. Many seasoned programmers not only avoid AI-generated code but also prohibit their teams from using it. Their reasoning is simple: “AI-generated code is unreliable.” Even if one doesn’t agree with this anti-AI stance, they’ve likely faced challenges, hurdles, or frustrations when using AI for programming. The key is finding the right strategies to use AI to your advantage. Many are still using outdated AI strategies from two years ago, likened to cutting down a tree with kitchen knives. Two Major Issues with AI for Developers The Wrong Way to Use AI… …can be broken down into two parts: When ChatGPT first launched, the typical way to work with AI was to visit the website and chat with GPT-3.5 in a browser. The process was straightforward: copy code from the IDE, paste it into ChatGPT with a basic prompt like “add comments,” get the revised code, check for errors, and paste it back into the IDE. Many developers, especially beginners and students, are still using this same method. However, the AI landscape has changed significantly over the last two years, and many have not adjusted their approach to fully leverage AI’s potential. Another common pitfall is how developers use AI. They ask the LLM to generate code, test it, and go back and forth to fix any issues. Often, they fall into an endless loop of AI hallucinations when trying to get the LLM to understand what’s wrong. This can be frustrating and unproductive. Four Tools to Boost Programming Productivity with AI 1. Cursor: AI-First IDE Cursor is an AI-first IDE built on VScode but enhanced with AI features. It allows developers to integrate a chatbot API and use AI as an assistant. Some of Cursor’s standout features include: Cursor integrates seamlessly with VScode, making it easy for existing users to transition. It supports various models, including GPT-4, Claude 3.5 Sonnet, and its built-in free cursor-small model. The combination of Cursor and Sonnet 3.5 has been particularly praised for producing reliable coding results. This tool is a significant improvement over copy-pasting code between ChatGPT and an IDE. 2. Micro Agent: Code + Test Case Micro Agent takes a different approach to AI-generated code by focusing on test cases. Instead of generating large chunks of code, it begins by creating test cases based on the prompt, then writes code that passes those tests. This method results in more grounded and reliable output, especially for functions that are tricky but not overly complex. 3. SWE-agent: AI for GitHub Issues Developed by Princeton Language and Intelligence, SWE-agent specializes in resolving real-world GitHub repository issues and submitting pull requests. It’s a powerful tool for managing large repositories, as it reviews codebases, identifies issues, and makes necessary changes. SWE-agent is open-source and has gained considerable popularity on GitHub. 4. AI Commits: git commit -m AI Commits generates meaningful commit messages based on your git diff. This simple tool eliminates the need for vague or repetitive commit messages like “minor changes.” It’s easy to install and uses GPT-3.5 for efficient, AI-generated commit messages. The Path Forward To stay productive and achieve goals in the rapidly evolving AI landscape, developers need the right tools. The limitations of AI, such as hallucinations, can’t be eliminated, but using the appropriate tools can help mitigate them. Simple, manual interactions like generating code or comments through ChatGPT can be frustrating. By adopting the right strategies and tools, developers can avoid these pitfalls and confidently enhance their coding practices. AI is evolving fast, and keeping up with its changes is crucial. The right tools can make all the difference in your programming workflow. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Battle of Copilots

Battle of Copilots

Salesforce is directly challenging Microsoft in the growing battle of AI copilots, which are designed to enhance customer experience (CX) across key business functions like sales and support. In this competitive landscape, Salesforce is taking on not only Microsoft but also major AI rivals such as Google Gemini, OpenAI GPT, and IBM watsonx. At the heart of this strategy is Salesforce Agentforce, a platform that leverages autonomous decision-making to meet enterprise demands for data and AI abstraction. Salesforce Dreamforce Highlights One of the most significant takeaways from last month’s Dreamforce conference in San Francisco was the unveiling of autonomous agents, bringing advanced GenAI capabilities to the app development process. CEO Marc Benioff and other Salesforce executives made it clear that Salesforce is positioning itself to compete with Microsoft’s Copilot, rebranding and advancing its own AI assistant, previously known as Einstein AI. Microsoft’s stronghold, however, lies in Copilot’s seamless integration with widely used products like Teams, Outlook, PowerPoint, and Word. Furthermore, Microsoft has established itself as a developer’s favorite, especially with GitHub Copilot and the Azure portfolio, which are integral to app modernization in many enterprises. “Salesforce faces an uphill battle in capturing market share from these established players,” says Charlotte Dunlap, Research Director at GlobalData. “Salesforce’s best chance lies in highlighting the autonomous capabilities of Agentforce—enabling businesses to automate more processes, moving beyond basic chatbot functions, and delivering a personalized customer experience.” This emphasis on autonomy is vital, given that many enterprises are still grappling with the complexities of emerging GenAI technologies. Dunlap points out that DevOps teams are struggling to find third-party expertise that understands how GenAI fits within existing IT systems, particularly around security and governance concerns. Salesforce’s focus on automation, combined with the integration prowess of MuleSoft, positions it as a key player in making GenAI tools more accessible and intuitive for businesses. Elevating AI Abstraction and Automation Salesforce has increasingly focused on the idea of abstracting data and AI, exemplified by its Data Cloud and low-level UI capabilities. Now, with models like the Atlas Reasoning Engine, Salesforce is looking to push beyond traditional AI assistants. These tools are designed to automate complex, previously human-dependent tasks, spanning functions like sales, service, and marketing. Simplifying the Developer Experience The true measure of Salesforce’s success in its GenAI strategy will emerge in the coming months. The company is well aware that its ability to simplify the developer experience is critical. Enterprises are looking for more than just AI innovation—they want thought leadership that can help secure budget and executive support for AI initiatives. Many companies report ongoing struggles in gaining that internal buy-in, further underscoring the importance of strong, strategic partnerships with technology providers like Salesforce. In its pursuit to rival Microsoft Copilot, Salesforce’s future hinges on how effectively it can build on its track record of simplifying the developer experience while promoting the unique autonomous qualities of Agentforce. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI-Ready Text Data

AI-Ready Text Data

Large language models (LLMs) are powerful tools for processing text data from various sources. Common tasks include editing, summarizing, translating, and extracting text. However, one of the key challenges in utilizing LLMs effectively is ensuring that your data is AI-ready. This insight will explain what it means to have AI-Ready Text Data and present a few no-code solutions to help you achieve this. What Does AI-Ready Mean? We are surrounded by vast amounts of unstructured text data—web pages, PDFs, emails, organizational documents, and more. These unstructured documents hold valuable information, but they can be difficult to process using LLMs without proper preparation. Many users simply copy and paste text into a prompt, but this method is not always effective. Consider the following challenges: To be AI-ready, your data should be formatted in a way that LLMs can easily interpret, such as plain text or Markdown. This ensures efficient and accurate text processing. Plain Text vs. Markdown Plain text (.txt) is the most basic file type, containing only raw characters without any stylization. Markdown files (.md) are a type of plain text but include special characters to format the text, such as using asterisks for italics or bolding. LLMs are adept at processing Markdown because it provides both content and structure, enhancing the model’s ability to understand and organize information. Markdown’s simple syntax for headers, lists, and links allows LLMs to extract additional meaning from the document’s structure, leading to more accurate interpretations. Markdown is widely supported across various platforms (e.g., Slack, Discord, GitHub, Google Docs), making it a versatile option for preparing AI-ready text. Tools for AI-Ready Data Here are some essential tools to help you manage Markdown and integrate it into your LLM workflows: Recommended Tools for Managing AI-Ready Data Obsidian: Save and Store Plain Text Obsidian is a great tool for saving and organizing Markdown files. It’s a free text editor that supports plain-text workflows, making it an excellent choice for storing content extracted from PDFs or web pages. Jina AI Reader: Convert Web Pages to Markdown Jina AI Reader is an easy-to-use tool for converting web pages into Markdown. Simply add https://r.jina.ai/ before a webpage URL, and it will return the content in Markdown format. This method streamlines the process of extracting relevant text without the clutter of formatting. LlamaParse: Extract Plain Text from Documents Highly formatted documents like PDFs can present unique challenges when working with LLMs. LlamaParse, part of LlamaIndex’s suite, helps strip away formatting to focus on the content. By using LlamaParse, you can extract plain text or Markdown from documents and ensure only the relevant sections are processed. Our Thoughts Preparing text data for AI involves strategies to convert, store, and process content efficiently. While this may seem daunting at first, using the right tools will streamline your workflow and allow you to maximize the power of LLMs for your specific tasks. Tectonic is ready to assist. Contact us today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
What Makes a True AI Agent

What Makes a True AI Agent

What Makes a True AI Agent? Rethinking the Pursuit of Autonomy Unpacking the Core Traits of AI Agents — And Why Foundations Matter More Than Buzzwords The tech industry is enamored with AI agents. From sales bots to autonomous systems, companies like Salesforce and HubSpot claim to offer groundbreaking AI agents. Yet, I’ve yet to encounter a truly autonomous, agentic experience built from LLMs. The market is awash with what I call “botshit,” and if the best Salesforce can do is improve slightly over a mediocre chatbot, that’s underwhelming. What Makes a True AI Agent? But here’s the critical question everyone is missing: even if we could build fully autonomous AI agents, how often would they be the best solution for users? To explore this, let’s consider travel planning through the lens of agents and assistants. This use case helps clarify what each trait of agentic behavior brings to the table and offers a framework for evaluating AI products beyond the hype. By the end of this piece, you’ll be able to decide whether AI autonomy is a worthwhile investment or a costly distraction. The Spectrum of Agentic Behavior: A Practical Framework There’s no consensus on what truly defines an AI “agent.” Instead of relying on a binary classification, I suggest adopting a spectrum framework with six key attributes from AI research. This approach is more useful in today’s landscape because: Using the example of a travel “agent,” we’ll explore how different implementations fall on this spectrum. Most real-world applications land somewhere between “basic” and “advanced” tiers across the six traits. This framework will help you make informed decisions about AI integration and communicate more effectively with both technical teams and end users. By the end, you’ll be equipped to: What Makes a True AI Agent The Building Blocks of Agentic Behavior 1. Perception The ability to sense and interpret its environment or relevant data streams. An agent with advanced perception could, for instance, notice your preference for destinations with excellent public transit and factor that into future recommendations. 2. Interactivity The ability to engage with its environment, users, and external systems. LLMs like ChatGPT have set a high bar for interactivity. However, most customer support bots struggle because they need to integrate company-specific data and backend systems, prioritizing accuracy over creativity. 3. Persistence The ability to store, maintain, and update long-term memories about users and interactions. True persistence requires systems that not only store data but also evolve with each interaction, much like how a human travel agent remembers your favorite seat on a plane. 4. Reactivity The ability to respond to changes in its environment in real time. For example, a reactive system could suggest alternative travel dates if hotel prices surge due to a local event. 5. Proactivity The ability to anticipate needs and offer relevant suggestions unprompted. True proactivity requires robust perception, persistence, and reactivity to offer timely, context-aware suggestions. 6. Autonomy The ability to operate independently and make decisions within defined parameters. Autonomy varies by the level of resource control, impact scope, and operational boundaries. For example: The more complex the task and the greater the impact of a mistake, the more safeguards and precision the system needs. Proactive Autonomy: A Future Frontier The next step is proactive autonomy — the ability to modify goals or parameters to achieve overarching objectives. While theoretically possible, this introduces new risks and complexities, bringing us closer to the scenarios seen in sci-fi, where AI systems operate beyond human control. Most companies are nowhere near this level, and prioritizing foundation work like perception and persistence is far more practical for today’s needs. Agents vs. Assistants: A Useful Distinction An AI agent demonstrates at least five of the six attributes and exhibits autonomy within its domain. An AI assistant excels in perception, interactivity, and persistence but lacks autonomy or proactivity. It primarily responds to human requests and relies on human oversight for decisions. While many AI systems today are labeled “agents,” most function more like assistants. A Roomba, for example, is closer to an agent, autonomously navigating and adapting within a predefined space. On the other hand, tools like GitHub Copilot serve as powerful assistants, enhancing user capabilities without making independent decisions. Foundations Before Flash: The Role of Data Despite all the AI buzz, few companies today have the data foundations to support meaningful agentic behavior. For instance, most customer interactions rely on nuanced, unwritten information that is hard to automate. Missing perception foundations and inadequate testing lead to the “botshit” plaguing the industry. The key is to focus on building strong foundations in perception, interactivity, and persistence before tackling full autonomy. Start with the Problem: Why User-Centric AI Wins Before chasing the dream of autonomous agents, companies should start by asking what users actually need. Many organizations would benefit more from developing reliable assistants rather than fully autonomous systems. Real user problems, like those solved by Waymo and Roomba, offer clear paths to valuable AI solutions. The Path Forward: Align Data, Systems, and User Needs When deciding where to invest in AI: By focusing on foundational pillars, companies can build AI systems that solve immediate problems, laying the groundwork for more advanced capabilities in the future. Whether you’re developing agents, assistants, or indispensable tools, aligning solutions with real user needs is the key to meaningful progress. Contact Tectonic for assistance answering the question What Makes a True AI Agent work for my business? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has

Read More
AI Agents Connect Tool Calling and Reasoning

AI Agents Connect Tool Calling and Reasoning

AI Agents: Bridging Tool Calling and Reasoning in Generative AI Exploring Problem Solving and Tool-Driven Decision Making in AI Introduction: The Emergence of Agentic AI Recent advancements in libraries and low-code platforms have simplified the creation of AI agents, often referred to as digital workers. Tool calling stands out as a key capability that enhances the “agentic” nature of Generative AI models, enabling them to move beyond mere conversational tasks. By executing tools (functions), these agents can act on your behalf and tackle intricate, multi-step problems requiring sound decision-making and interaction with diverse external data sources. This insight explores the role of reasoning in tool calling, examines the challenges associated with tool usage, discusses common evaluation methods for tool-calling proficiency, and provides examples of how various models and agents engage with tools. Reasoning as a Means of Problem-Solving Successful agents rely on two fundamental expressions of reasoning: reasoning through evaluation and planning, and reasoning through tool use. While both reasoning expressions are vital, they don’t always need to be combined to yield powerful solutions. For instance, OpenAI’s new o1 model excels in reasoning through evaluation and planning, having been trained to utilize chain of thought effectively. This has notably enhanced its ability to address complex challenges, achieving human PhD-level accuracy on benchmarks like GPQA across physics, biology, and chemistry, and ranking in the 86th-93rd percentile on Codeforces contests. However, the o1 model currently lacks explicit tool calling capabilities. Conversely, many models are specifically fine-tuned for reasoning through tool use, allowing them to generate function calls and interact with APIs effectively. These models focus on executing the right tool at the right moment but may not evaluate their results as thoroughly as the o1 model. The Berkeley Function Calling Leaderboard (BFCL) serves as an excellent resource for comparing the performance of various models on tool-calling tasks and provides an evaluation suite for assessing fine-tuned models against challenging scenarios. The recently released BFCL v3 now includes multi-step, multi-turn function calling, raising the standards for tool-based reasoning tasks. Both reasoning types are powerful in their own right, and their combination holds the potential to develop agents that can effectively deconstruct complex tasks and autonomously interact with their environments. For more insights into AI agent architectures for reasoning, planning, and tool calling, check out my team’s survey paper on ArXiv. Challenges in Tool Calling: Navigating Complex Agent Behaviors Creating robust and reliable agents necessitates overcoming various challenges. In tackling complex problems, an agent often must juggle multiple tasks simultaneously, including planning, timely tool interactions, accurate formatting of tool calls, retaining outputs from prior steps, avoiding repetitive loops, and adhering to guidelines to safeguard the system against jailbreaks and prompt injections. Such demands can easily overwhelm a single agent, leading to a trend where what appears to an end user as a single agent is actually a coordinated effort of multiple agents and prompts working in unison to divide and conquer the task. This division enables tasks to be segmented and addressed concurrently by distinct models and agents, each tailored to tackle specific components of the problem. This is where models with exceptional tool-calling capabilities come into play. While tool calling is a potent method for empowering productive agents, it introduces its own set of challenges. Agents must grasp the available tools, choose the appropriate one from a potentially similar set, accurately format the inputs, execute calls in the correct sequence, and potentially integrate feedback or instructions from other agents or humans. Many models are fine-tuned specifically for tool calling, allowing them to specialize in selecting functions accurately at the right time. Key considerations when fine-tuning a model for tool calling include: Common Benchmarks for Evaluating Tool Calling As tool usage in language models becomes increasingly significant, numerous datasets have emerged to facilitate the evaluation and enhancement of model tool-calling capabilities. Two prominent benchmarks include the Berkeley Function Calling Leaderboard and the Nexus Function Calling Benchmark, both utilized by Meta to assess the performance of their Llama 3.1 model series. The recent ToolACE paper illustrates how agents can generate a diverse dataset for fine-tuning and evaluating model tool use. Here’s a closer look at each benchmark: Each of these benchmarks enhances our ability to evaluate model reasoning through tool calling. They reflect a growing trend toward developing specialized models for specific tasks and extending the capabilities of LLMs to interact with the real world. Practical Applications of Tool Calling If you’re interested in observing tool calling in action, here are some examples to consider, categorized by ease of use, from simple built-in tools to utilizing fine-tuned models and agents with tool-calling capabilities. While the built-in web search feature is convenient, most applications require defining custom tools that can be integrated into your model workflows. This leads us to the next complexity level. To observe how models articulate tool calls, you can use the Databricks Playground. For example, select the Llama 3.1 405B model and grant access to sample tools like get_distance_between_locations and get_current_weather. When prompted with, “I am going on a trip from LA to New York. How far are these two cities? And what’s the weather like in New York? I want to be prepared for when I get there,” the model will decide which tools to call and what parameters to provide for an effective response. In this scenario, the model suggests two tool calls. Since the model cannot execute the tools, the user must input a sample result to simulate. Suppose you employ a model fine-tuned on the Berkeley Function Calling Leaderboard dataset. When prompted, “How many times has the word ‘freedom’ appeared in the entire works of Shakespeare?” the model will successfully retrieve and return the answer, executing the required tool calls without the user needing to define any input or manage the output format. Such models handle multi-turn interactions adeptly, processing past user messages, managing context, and generating coherent, task-specific outputs. As AI agents evolve to encompass advanced reasoning and problem-solving capabilities, they will become increasingly adept at managing

Read More
Open AI Update

Open AI Update

OpenAI has established itself as a leading force in the generative AI space, with its ChatGPT being one of the most widely recognized AI tools. Powered by the GPT series of large language models (LLMs), as of September 2024, ChatGPT primarily uses GPT-4o and GPT-3.5. This insight provides an Open AI Update. In August and September 2024, rumors circulated about a new model from OpenAI, codenamed “Strawberry.” Initially, it was unclear if this model would be a successor to GPT-4o or something entirely different. On September 12, 2024, the mystery was resolved with the official launch of OpenAI’s o1 models, including o1-preview and o1-mini. What is OpenAI o1? OpenAI o1 is a new family of LLMs optimized for advanced reasoning tasks. Unlike earlier models, o1 is designed to improve problem-solving by reasoning through queries rather than just generating quick responses. This deeper processing aims to produce more accurate answers to complex questions, particularly in fields like STEM (science, technology, engineering, and mathematics). The o1 models, currently available in preview form, are intended to provide a new type of LLM experience beyond what GPT-4o offers. Like all OpenAI LLMs, the o1 series is built on transformer architecture and can be used for tasks such as content summarization, new content generation, question answering, and writing code. Key Features of OpenAI o1 The standout feature of the o1 models is their ability to engage in multistep reasoning. By adopting a “chain-of-thought” approach, o1 models break down complex problems and reason through them iteratively. This makes them particularly adept at handling intricate queries that require a more thoughtful response. The initial September 2024 launch included two models: Use Cases for OpenAI o1 The o1 models can perform many of the same functions as GPT-4o, such as answering questions, summarizing content, and generating text. However, they are particularly suited for tasks that benefit from enhanced reasoning, including: Availability and Access The o1-preview and o1-mini models are available to users of ChatGPT Plus and Team as of September 12, 2024. OpenAI plans to extend access to ChatGPT Enterprise and Education users starting September 19, 2024. While free ChatGPT users do not have access to these models at launch, OpenAI intends to introduce o1-mini to free users in the future. Developers can also access the models through OpenAI’s API, and third-party platforms such as Microsoft Azure AI Studio and GitHub Models offer integration. Limitations of OpenAI o1 As preview models, o1 comes with certain limitations: Enhancing Safety with OpenAI o1 To ensure safety, OpenAI released a System Card that outlines how the o1 models were evaluated for risks like cybersecurity threats, persuasion, and model autonomy. The o1 models improve safety through: GPT-4o vs. OpenAI o1 Here’s a quick comparison between GPT-4o and OpenAI’s new o1 models: Feature GPT-4o o1 Models Release Date May 13, 2024 Sept. 12, 2024 Model Variants Single model Two variants: o1-preview and o1-mini Reasoning Capabilities Good Enhanced, especially for STEM fields Mathematics Olympiad Score 13% 83% Context Window 128K tokens 128K tokens Speed Faster Slower due to in-depth reasoning Cost (per million tokens) Input: $5; Output: $15 o1-preview: $15 input, $60 output; o1-mini: $3 input, $12 output Safety and Alignment Standard Enhanced safety, better jailbreak resistance OpenAI’s o1 models bring a new level of reasoning and accuracy, making them a promising advancement in generative AI. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
chatGPT open ai 01

ChatGPT Open AI o1

OpenAI has firmly established itself as a leader in the generative AI space, with its ChatGPT being one of the most well-known applications of AI today. Powered by the GPT family of large language models (LLMs), ChatGPT’s primary models, as of September 2024, are GPT-4o and GPT-3.5. In August and September 2024, rumors surfaced about a new model from OpenAI, codenamed “Strawberry.” Speculation grew as to whether this was a successor to GPT-4o or something else entirely. The mystery was resolved on September 12, 2024, when OpenAI launched its new o1 models, including o1-preview and o1-mini. What Is OpenAI o1? The OpenAI o1 family is a series of large language models optimized for enhanced reasoning capabilities. Unlike GPT-4o, the o1 models are designed to offer a different type of user experience, focusing more on multistep reasoning and complex problem-solving. As with all OpenAI models, o1 is a transformer-based architecture that excels in tasks such as content summarization, content generation, coding, and answering questions. What sets o1 apart is its improved reasoning ability. Instead of prioritizing speed, the o1 models spend more time “thinking” about the best approach to solve a problem, making them better suited for complex queries. The o1 models use chain-of-thought prompting, reasoning step by step through a problem, and employ reinforcement learning techniques to enhance performance. Initial Launch On September 12, 2024, OpenAI introduced two versions of the o1 models: Key Capabilities of OpenAI o1 OpenAI o1 can handle a variety of tasks, but it is particularly well-suited for certain use cases due to its advanced reasoning functionality: How to Use OpenAI o1 There are several ways to access the o1 models: Limitations of OpenAI o1 As an early iteration, the o1 models have several limitations: How OpenAI o1 Enhances Safety OpenAI released a System Card alongside the o1 models, detailing the safety and risk assessments conducted during their development. This includes evaluations in areas like cybersecurity, persuasion, and model autonomy. The o1 models incorporate several key safety features: GPT-4o vs. OpenAI o1: A Comparison Here’s a side-by-side comparison of GPT-4o and OpenAI o1: Feature GPT-4o o1 Models Release Date May 13, 2024 Sept. 12, 2024 Model Variants Single Model Two: o1-preview and o1-mini Reasoning Capabilities Good Enhanced, especially in STEM fields Performance Benchmarks 13% on Math Olympiad 83% on Math Olympiad, PhD-level accuracy in STEM Multimodal Capabilities Text, images, audio, video Primarily text, with developing image capabilities Context Window 128K tokens 128K tokens Speed Fast Slower due to more reasoning processes Cost (per million tokens) Input: $5; Output: $15 o1-preview: $15 input, $60 output; o1-mini: $3 input, $12 output Availability Widely available Limited to specific users Features Includes web browsing, file uploads Lacks some features from GPT-4o, like web browsing Safety and Alignment Focus on safety Improved safety, better resistance to jailbreaking ChatGPT Open AI o1 OpenAI o1 marks a significant advancement in reasoning capabilities, setting a new standard for complex problem-solving with LLMs. With enhanced safety features and the ability to tackle intricate tasks, o1 models offer a distinct upgrade over their predecessors. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More

Linus Torvalds Insights

Linus Torvalds Shares Insights on the Future of Programming with AI Linus Torvalds, the mastermind behind Linux and Git—two cornerstones of modern software development—recently shared his perspective on how artificial intelligence (AI) is reshaping the world of programming. His candid insights offer a balanced view of AI’s capabilities and limitations, coming from one of the industry’s most influential voices. If you prefer a quick breakdown over watching a full interview, here are the key takeaways from Torvalds’ conversation. AI in Programming: Evolution, Not Revolution Torvalds describes AI, particularly large language models (LLMs), as “autocorrect on steroids.” These tools excel at predicting the next word or line of code based on established patterns but aren’t “intelligent” in the human sense. Rather than a seismic shift, AI represents the next step in a long history of automation in coding. From the days of machine language to today’s high-level languages like Python and Rust, tools have continuously evolved to make developers’ lives easier. AI is just another link in this chain—helping write, refine, and debug code while boosting productivity. AI as a Developer’s Supercharged Assistant Far from being a replacement for human programmers, Torvalds sees AI as a powerful assistant. Tools like GitHub Copilot are already enhancing the coding process by suggesting fixes, spotting bugs, and speeding up routine tasks. The vision? A future where programmers can abstract tasks even further, possibly instructing AI in plain English. Imagine simply saying, “Build me a tool to manage my expenses,” and watching it happen. However, for now, AI is an incremental improvement, not a groundbreaking leap. The Shift Toward AI-Generated Code One of Torvalds’ more intriguing predictions is that AI may eventually write code in ways incomprehensible to human programmers. Since AI doesn’t require human-readable syntax, it could optimize code in ways that only it understands. In this scenario, developers might transition from writing code to managing AI systems that generate and refine it—shifting from hands-on creators to overseers of automated processes. AI in Code Review: Smarter Intern or Future Partner? When it comes to code review, AI’s potential is clear. Torvalds notes that AI could efficiently catch simple errors—like typos or syntax mistakes—freeing up human reviewers to focus on more complex logic and functionality. While AI might streamline tedious tasks, it’s far from perfect. Issues like “hallucinations,” where AI confidently produces incorrect results, highlight the need for human oversight. AI can assist, but it still requires developers to verify its output. A Balanced Take on AI and Jobs Torvalds dismisses fears of AI taking over programming jobs, pointing out that technological advancements historically create new opportunities rather than eliminate roles. AI, in his view, is less about replacing humans and more about augmenting their abilities. It’s a tool to make developers more efficient—not a harbinger of obsolescence. Final Thoughts: Embrace AI, But Stay Grounded Linus Torvalds envisions AI as a valuable, evolving tool for programmers, not a threat to their livelihood. While it’s set to change how we code, the shift will be gradual rather than revolutionary. Whether you’re a seasoned developer or a newcomer, now is the time to explore AI-powered tools, embrace their potential, and adapt to this new era of programming. Instead of fearing change, we can use AI to push the boundaries of what’s possible. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
GitHub Copilot Autofix

GitHub Copilot Autofix

On Wednesday, GitHub announced the general availability of Copilot Autofix, an AI-driven tool designed to identify and remediate software vulnerabilities. Originally unveiled in March and tested in public beta, Copilot Autofix integrates GitHub’s CodeQL scanning engine with GPT-4, heuristics, and Copilot APIs to generate code suggestions for developers. The tool provides prompts based on CodeQL analysis and code snippets, allowing users to accept, edit, or reject the suggestions. In a blog post, Mike Hanley, GitHub’s Chief Security Officer and Senior Vice President of Engineering, highlighted the challenges developers and security teams face in addressing existing vulnerabilities. “Code scanning tools can find vulnerabilities, but the real issue is remediation, which requires security expertise and time—both of which are in short supply,” Hanley noted. “The problem isn’t finding vulnerabilities; it’s fixing them.” According to GitHub, the private beta of Copilot Autofix showed that users could respond to a CodeQL alert and automatically remediate a vulnerability in a pull request in just 28 minutes on average, compared to 90 minutes for manual remediation. The tool was even faster for common vulnerabilities like cross-site scripting, with remediation times averaging 22 minutes compared to three hours manually, and SQL injection flaws, which were fixed in 18 minutes on average versus almost four hours manually. Hanley likened the efficiency of Copilot Autofix in fixing vulnerabilities to the speed at which GitHub Copilot, their generative AI coding assistant released in 2022, produces code for developers. However, there have been concerns that GitHub Copilot and similar AI coding assistants could replicate existing vulnerabilities in the codebases they help generate. Industry analyst Katie Norton from IDC noted that while the replication of vulnerabilities is concerning, the rapid pace at which AI coding assistants generate new software could pose a more significant security issue. Chris Wysopal, CTO and co-founder of Veracode, echoed this concern, pointing out that faster coding speeds have led to more software being produced and a larger backlog of vulnerabilities for developers to manage. Norton also emphasized that AI-powered tools like Copilot Autofix could help alleviate the burden on developers by reducing these backlogs and enabling them to fix vulnerabilities without needing to be security experts. Other vendors, including Mobb and Snyk, have also developed AI-powered autoremediation tools. Initially supporting JavaScript, TypeScript, Java, and Python during its public beta, Copilot Autofix now also supports C#, C/C++, Go, Kotlin, Swift, and Ruby. Hanley also highlighted that Copilot Autofix would benefit the open-source software community. GitHub has previously provided open-source maintainers with free access to enterprise security tools for code scanning, secret scanning, and dependency management. Starting in September, Copilot Autofix will also be made available for free to these maintainers. “As the global home of the open-source community, GitHub is uniquely positioned to help maintainers detect and remediate vulnerabilities, making open-source software safer and more reliable for everyone,” Hanley said. Copilot Autofix is now available to all GitHub customers globally. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Then and Now

AI Then and Now

AI: Transforming User Interactions and Experiences Have you ever been greeted by a waitress who already knows your breakfast order? It’s a relief not to detail every aspect — temperature, how do you want your eggs, what kind of juice, bacon or sausage, etc. This example encapsulates the journey we’re navigating with AI today. AI Then and Now. This article isn’t about ordering breakfast; it’s about the evolution of user interactions, particularly how generative AI might evolve based on past trends in graphical user interfaces (GUIs) and emerging trends in AI interactions. We’ll explore the significance of context bundling, user curation, trust, and ecosystems as key trends in AI user experience in this Tectonic insight. From Commands to Conversations Let’s rewind to the early days of computing when users had to type precise commands in a Command-Line Interface (CLI). Imagine the challenge of remembering the exact command to open a file or copy data. This complexity meant that only a few people could use computers effectively. To reach a broader audience, a shift was necessary. You might think Apple’s creation of the mouse and drop down menues was the pinnacle of success, but truly the evolution predates Apple. Enter ELIZA in 1964, an early natural language processing program that engaged users in basic conversations through keyword recognition and scripted responses. Although groundbreaking, ELIZA’s interactions were far from flexible or scalable. Around the same time, Xerox PARC was developing the Graphical User Interface (GUI), later popularized by Apple in 1984 and Microsoft shortly thereafter. GUIs transformed computing by replacing complex commands with icons, menus, and windows navigable by a mouse. This innovation made computers accessible and intuitive for everyday tasks, laying the groundwork for technology’s universal role in our lives. Not only did it make computing accessible to the masses but it layed the foundation upon which every household would soon have one or more computers! The Evolution of AI Interfaces Just as early computing transitioned from the complexity of CLI to the simplicity of GUIs, we’re witnessing a parallel evolution in generative AI. User prompts are essentially mini-programs crafted in natural language, with the quality of outcomes depending on our prompt engineering skills. We are moving towards bundling complex inputs into simpler, more user-friendly interfaces with the complexity hidden in the background. Context Bundling Context bundling simplifies interactions by combining related information into a single command. This addresses the challenge of conveying complex instructions to achieve desired outcomes, enhancing efficiency and output quality by aligning user intent and machine understanding in one go. We’ve seen context bundling emerge across generative AI tools. For instance, sample prompts in Edge, Google Chrome’s tab manager, and trigger-words in Stable Diffusion fine-tune AI outputs. Context bundling isn’t always about conversation; it’s about achieving user goals efficiently without lengthy interactions. Context bundling is the difference in ordering the eggs versus telling the cook how to crack and prepare it. User Curation Despite advancements, there remains a spectrum of needs where users must refine outputs to achieve specific goals. This is especially true for tasks like researching, brainstorming, creating content, refining images, or editing. As context windows and multi-modal capabilities expand, guiding users through complexity becomes even more crucial. Humans constantly curate their experiences, whether by highlighting text in a book or picking out keywords in a conversation. Similarly, users interacting with ChatGPT often highlight relevant information to guide their next steps. By making it easier for users to curate and refine their outputs, AI tools can offer higher-quality results and enrich user experiences. User creation takes ordering breakfast from a manual conversational process to the click of a button on a vending-like system. Designing for Trust Trust is a significant barrier to the widespread adoption of generative AI. To build trust, we need to consider factors such as previous experiences, risk tolerance, interaction consistency, and social context. Without trust, in AI or your breakfast order, it becomes easier just to do it yourself. Trust is broken if the waitress brings you the wrong items, or if the artificial intelligence fails to meet your reasonable expectations. Context Ecosystems Generative AI has revolutionized productivity by lowering the barrier for users to start tasks, mirroring the benefits and journey of the GUI. However, modern UX has evolved beyond simple interfaces. The future of generative AI lies in creating ecosystems where AI tools collaborate with users in a seamless workflow. We see emergent examples like Edge, Chrome, and Pixel Assistant integrating AI functionality into their software. This integration goes beyond conversational windows, making AI aware of the software context and enhancing productivity. The Future of AI Interaction Generative AI will likely evolve to become a collaborator in our daily tasks. Tools like Grammarly and Github Copilot already show how AI can assist users in creating and refining content. As our comfort with AI grows, we may see generative AI managing both digital and physical aspects of our lives, augmenting reality and redefining productivity. The evolution of generative AI interactions is repeating the history of human-computer interaction. By creating better experiences that bundle context into simpler interactions, empower user curation, and augment known ecosystems, we can make generative AI more trustworthy, accessible, usable, and beneficial for everyone. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com