Non-Linear Archives - gettectonic.com
AI Agent Workflows

AI Agent Workflows

AI Agent Workflows: The Ultimate Guide to Choosing Between LangChain and LangGraph Explore two transformative libraries—LangChain and LangGraph—both created by the same developer, designed to build Agentic AI applications. This guide dives into their foundational components, differences in handling functionality, and how to choose the right tool for your use case. Language Models as the Bridge Modern language models have unlocked revolutionary ways to connect users with AI systems and enable AI-to-AI communication via natural language. Enterprises aiming to harness Agentic AI capabilities often face the pivotal question: “Which tools should we use?” For those eager to begin, this question can become a roadblock. Why LangChain and LangGraph? LangChain and LangGraph are among the leading frameworks for crafting Agentic AI applications. By understanding their core building blocks and approaches to functionality, you’ll gain clarity on how each aligns with your needs. Keep in mind that the rapid evolution of generative AI tools means today’s truths might shift tomorrow. Note: Initially, this guide intended to compare AutoGen, LangChain, and LangGraph. However, AutoGen’s upcoming 0.4 release introduces a foundational redesign. Stay tuned for insights post-launch! Understanding the Basics LangChain LangChain offers two primary methods: Key components include: LangGraph LangGraph is tailored for graph-based workflows, enabling flexibility in non-linear, conditional, or feedback-loop processes. It’s ideal for cases where LangChain’s predefined structure might not suffice. Key components include: Comparing Functionality Tool Calling Conversation History and Memory Retrieval-Augmented Generation (RAG) Parallelism and Error Handling When to Choose LangChain, LangGraph, or Both LangChain Only LangGraph Only Using LangChain + LangGraph Together Final Thoughts Whether you choose LangChain, LangGraph, or a combination, the decision depends on your project’s complexity and specific needs. By understanding their unique capabilities, you can confidently design robust Agentic AI workflows. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Exploring Emerging LLM

Exploring Emerging LLM

Exploring Emerging LLM Agent Types and Architectures The Evolution Beyond ReAct AgentsThe shortcomings of first-generation ReAct agents have paved the way for a new era of LLM agents, bringing innovative architectures and possibilities. In 2024, agents have taken center stage in the AI landscape. Companies globally are developing chatbot agents, tools like MultiOn are bridging agents to external websites, and frameworks like LangGraph and LlamaIndex Workflows are helping developers build more structured, capable agents. However, despite their rising popularity within the AI community, agents are yet to see widespread adoption among consumers or enterprises. This leaves businesses wondering: How do we navigate these emerging frameworks and architectures? Which tools should we leverage for our next application? Having recently developed a sophisticated agent as a product copilot, we share key insights to guide you through the evolving agent ecosystem. What Are LLM-Based Agents? At their core, LLM-based agents are software systems designed to execute complex tasks by chaining together multiple processing steps, including LLM calls. These agents: The Rise and Fall of ReAct Agents ReAct (reason, act) agents marked the first wave of LLM-powered tools. Promising broad functionality through abstraction, they fell short due to their limited utility and overgeneralized design. These challenges spurred the emergence of second-generation agents, emphasizing structure and specificity. The Second Generation: Structured, Scalable Agents Modern agents are defined by smaller solution spaces, offering narrower but more reliable capabilities. Instead of open-ended design, these agents map out defined paths for actions, improving precision and performance. Key characteristics of second-gen agents include: Common Agent Architectures Agent Development Frameworks Several frameworks are now available to simplify and streamline agent development: While frameworks can impose best practices and tooling, they may introduce limitations for highly complex applications. Many developers still prefer code-driven solutions for greater control. Should You Build an Agent? Before investing in agent development, consider these criteria: If you answered “yes,” an agent may be a suitable choice. Challenges and Solutions in Agent Development Common Issues: Strategies to Address Challenges: Conclusion The generative AI landscape is brimming with new frameworks and fervent innovation. Before diving into development, evaluate your application needs and consider whether agent frameworks align with your objectives. By thoughtfully assessing the tools and architectures available, you can create agents that deliver measurable value while avoiding unnecessary complexity. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Chatbot-less AI-ifying

Chatbot-less AI-ifying

AI-ify Your Product Without Adding a Chatbot: Inspiration from Top AI Use Cases Artificial intelligence doesn’t always need to look like a chatbot. Some of the most innovative implementations of AI have created intuitive user experiences (UX) without relying on traditional conversational interfaces. Here are seven standout patterns from leading companies and startups that demonstrate how AI can elevate your product in ways that feel natural and empowering for users. These are just a preview of the 24 trending AI-UX patterns featured in the “Trending AI-UX Patterns” ebook by AIverse—perfect for borrowing (or expensing to your company). Pattern 1: Linear Back-and-Forth (Classic Chat) While chat interfaces revolutionized access to AI, this pattern is just the beginning. Think of ChatGPT—its conversational simplicity opened the door to powerful LLMs for non-tech audiences. But beyond basic chat, consider integrating generative UI commands or API-based functionality into your product to transform linear data access into something seamless and engaging. Pattern 2: Non-Linear Conversations Inspired by Subform, this pattern mirrors how humans think—connecting ideas in a web, not a straight line. Non-linear exploration allows users to navigate through information like dots on a map, offering a flexible, intuitive flow. For example, imagine an AI that surfaces related ideas or actions based on user input—ideal for creative tools or brainstorming apps. Pattern 3: Context Bundling Why stop at simple text input when you can bundle context visually? Figma’s dual-tone matrix simplifies tone adjustments for text by letting users drag across a 2D grid. It eliminates the need for complex prompts while maintaining control over customization. Think of ways to integrate pre-bundled prompts directly into your UI to create an intuitive, visually driven experience. Pattern 4: Living Documents Tools like Elicit bring AI into familiar interfaces like spreadsheets by enhancing workflows without disrupting them. Elicit’s bulk data extraction uses subtle animations and transparency—highlighting “low confidence” answers for clarity. This hybrid approach integrates AI in a way that feels natural and predictable, making it a great choice for data-heavy tools or reporting systems. Pattern 5: Work With Me One of the most human-centered AI patterns comes from Granola, which uses meeting summaries based on your rough notes. Instead of overwhelming users with full transcriptions, it creates concise, actionable insights, perfectly blending human oversight with AI-powered efficiency. This pattern exemplifies the “human-in-the-loop” trend, ensuring collaboration between the user and AI. Pattern 6: Highlight and Curate Take inspiration from Lex’s “@lex” comment feature, which allows users to highlight and comment directly in the flow of their work—no app switching or disruption required. By building on familiar text-interaction patterns, this approach integrates AI subtly, offering suggestions or enhancements without breaking the user’s autonomy. Pattern 7: Invisible AI (Agentive UX) AI can work quietly in the background until needed, as demonstrated by Ford’s lane assist. This feature seamlessly takes control during critical moments (e.g., steering) and hands it back to the user effortlessly. Visual, auditory, and haptic feedback make the transition intuitive and reassuring. This “agentive” pattern is perfect for products where AI acts as a silent partner, ready to assist only when necessary. Tectonic Conclusions These patterns prove that AI can elevate your product without resorting to a chatbot. Whether through non-linear exploration, visual bundling, or seamless agentive experiences, the key is to integrate AI in a way that feels intuitive, empowering, and aligned with user needs. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com