OpenAI Archives - gettectonic.com - Page 3
Scale and AI Influence Shape Partner Ecosystems

Scale and AI Influence Shape Partner Ecosystems

Hyperscalers’ Scale and AI Influence Shape Partner Ecosystems Despite their seemingly saturated networks, the largest cloud vendors continue to dominate as top ecosystems for service providers, according to a recent survey. Hyperscalers are playing a critical role in partner alliances, a trend that has only intensified in recent years. A study released by Tercera, an investment firm specializing in IT services, highlights the dominance of cloud giants AWS, Google Cloud, and Microsoft Azure in the partner ecosystem landscape. More than 50% of the 250 technology service providers surveyed by Tercera identified one of these three vendors as their primary partner. This data comes from Tercera’s third annual report on the Top 30 Partner Ecosystems. The report emphasizes the “gravitational pull” of these hyperscalers, attracting partners despite their already vast networks. Each of the major cloud vendors maintains relationships with thousands of software and services partners. “The hyperscalers continue to defy the law of large numbers when you look at how many partners are in their ecosystems,” said Michelle Swan, CMO at Tercera. The Shift in Channel Alliances The emergence of cloud vendors as top partners for service providers has been evident since at least 2021. That year, a survey by Accenture of 1,150 channel companies found that AWS, Google, and Microsoft accounted for the majority of revenue for these partners. This represents a significant shift in channel economics, where traditionally large hardware companies occupied the top spots in partner alliances. AI’s Role in Partner Ecosystem Growth The rise of generative AI (GenAI) is reshaping alliance strategies, as service providers increasingly align themselves with hyperscalers and their AI technology partners. For instance, AWS channel partners interested in GenAI are likely to work with Anthropic, following Amazon’s $4 billion investment in the AI company. Meanwhile, Microsoft partners tend to collaborate with OpenAI, as Microsoft has committed up to $13 billion in investments to expand their partnership. “They have their own solar systems,” Swan remarked, referencing AWS, Google, Microsoft, and the AI startups within their ecosystems. Tiers of Partner Ecosystems Tercera categorizes its top 30 ecosystems into three tiers. The first tier, known as “market anchors,” includes AWS, Google, Microsoft, and large independent software vendors (ISVs) such as Salesforce and ServiceNow. The second tier, “market movers,” features publicly traded vendors with evolving partner ecosystems. The third tier, “market challengers,” is made up of privately held vendors with a partner-centric focus, such as Anthropic and OpenAI. Generative AI Ecosystem Survey A 2024 generative AI survey conducted by TechTarget and its Enterprise Strategy Group supports the idea that the leading cloud vendors play a central role in AI ecosystems. In a poll of 610 GenAI decision-makers and users, Microsoft topped the list of ecosystems supporting GenAI initiatives, with 54% of respondents citing it as the best ecosystem. Microsoft’s partner, OpenAI, followed with 35%. Google and AWS ranked third and fourth, with 30% and 24% of the responses, respectively. The survey covered a wide range of industries, including business services and IT, further reinforcing the dominant role hyperscalers play in shaping AI and partner ecosystems. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Marketing Cloud and Generative AI

Marketing Cloud and Generative AI

Generative AI and Salesforce: Revolutionizing Digital Marketing with Einstein AI Generative AI is a form of Artificial Intelligence that learns from existing content to generate new, creative outputs. Salesforce has long been at the forefront of AI innovation, primarily through its Einstein assistant, which has evolved to offer increasingly sophisticated solutions over time. Artificial Intelligence: Key Concepts Before diving into Salesforce’s AI capabilities, let’s clarify some foundational concepts. Artificial Intelligence (AI) refers to the creation of intelligent systems that can learn and reason autonomously. Within AI, Machine Learning (ML) plays a crucial role by enabling computers to learn from data and improve over time without explicit programming. ML models fall into two broad categories: Deep Learning and Neural Networks A more advanced subset of ML is Deep Learning, which uses neural networks to process large amounts of data and make autonomous decisions. Deep Learning powers technologies like voice assistants (e.g., Alexa or Siri), which can recognize speech and execute tasks. A specific application within Deep Learning is Generative AI, capable of autonomously creating new content based on learned patterns from vast datasets. Another critical AI system is the Foundational Model, which is trained on enormous amounts of unstructured data from across the web, including text, images, and videos. These models offer a wide range of capabilities, such as generating text, answering questions, creating designs, or solving complex problems. Salesforce Marketing Cloud and AI Salesforce has utilizeded AI through its Einstein platform, which has evolved over time to offer a variety of data-driven tools. For example, Sent Time Optimization uses customer data to determine the best time to send emails to maximize engagement. AI Tools in Salesforce Marketing Cloud Salesforce offers several AI-powered tools for Marketing Cloud to help businesses leverage data for personalization and efficiency: The Einstein Trust Layer: AI in Salesforce CRM Einstein is the first generative AI model integrated into a CRM, and Salesforce refers to its AI process as the Einstein Trust Layer. Here’s how it works: Marketing Applications of Salesforce AI Tools Salesforce’s AI tools can be applied across omnichannel marketing campaigns to hyper-personalize communication, increasing conversion rates and customer engagement. Predictive analytics also allow businesses to optimize cross-selling and upselling, offering tailored product recommendations based on customer behavior. Chatbots powered by AI further enhance productivity by interacting in natural language, collecting leads, suggesting products, and resolving customer inquiries. Salesforce’s Commitment to AI in Digital Marketing Salesforce has been a pioneer in AI, continually expanding its capabilities through Einstein. With the latest AI tools for Marketing Cloud, businesses can now interact with customers more precisely, boost engagement, and optimize purchase predictions—paving the way for a new era in digital marketing. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce and the AI Revolution

Salesforce and the AI Revolution

In the early 2000s, Salesforce made waves in the tech world with its bold “No Software” marketing campaign, symbolized by the iconic image of the word “software” crossed out in a red circle. While it was a bit misleading—Salesforce still delivered software, just in the cloud—the campaign invited people to rethink software delivery. This marked the dawn of the cloud era, and businesses were ready for a change. Then, enter Salesforce and the AI Revolution. Today, we’re witnessing a similar shift with AI. The word “SaaS” is the latest to be crossed out in red, as AI-native applications, where AI is the core rather than an add-on, promise to disrupt service delivery at an unprecedented speed—far faster than cloud displaced on-premise software. Even Bessemer Venture Partners (BVP), a leader in identifying emerging AI trends, admits to being caught off guard by the rapid rise of AI. In its State of the Cloud 2024 report, which aptly declares “The Legacy Cloud is dead—long live AI Cloud!”, BVP highlights how even the most optimistic predictions couldn’t fully capture the pace and scale of AI’s impact. The AI Revolution: Opportunities and Disruption The AI market is evolving at breakneck speed, and entrepreneurs are scrambling to stake their claim in this quickly shifting landscape. In the early cloud era, companies like Box, Docusign, HubSpot, and Shopify found success by targeting specific business use cases with subscription-based, cloud-powered solutions. Similarly, today’s AI opportunity lies in industries where manual, repetitive tasks are still prevalent. Major AI players like OpenAI, Anthropic, and Mistral are investing billions in building large-scale language models (LLMs), but there’s a gap in the market for entrepreneurs to focus on verticals where human labor is still largely manual—such as legal, accounting, and outsourcing services. Traditionally, investors have shied away from these industries due to their reliance on manual labor, high costs, and low profit margins. But AI changes the game. Tasks once done manually can now be automated, transforming labor-intensive processes into scalable, high-margin operations. Services businesses that were once unattractive to investors will now attract attention as AI boosts profitability and efficiency. The Shift to AI-Native Applications The impact of AI-native applications will go beyond improving revenue models; they will fundamentally change how we interact with software. In the current SaaS model, users spend hours in applications, manually entering data and querying systems for answers. In contrast, AI-native B2B applications will solve problems end-to-end without requiring human input for every step. Software will work for users in the background, allowing them to focus on building relationships and making strategic decisions. However, humans won’t be removed from the equation. AI trained on real human intelligence in specific verticals will perform better than purely machine-based intelligence. The combination of human expertise and AI-native applications will drive significant, tangible business results. Avoid the “X of AI” Hype With excitement around AI reaching fever pitch, many startups are branding themselves as the “X of AI”—for instance, the “Salesforce of AI.” These claims are often surface-level, wrapping an AI solution around an existing LLM without delivering true innovation. To identify genuine AI-native solutions, look for these key characteristics: Spotting the Next AI Success Stories The AI space is noisy and crowded, and as more AI-native startups emerge, it will become even harder to separate the winners from the hype. The true innovators will be those who bring untapped data into the digital fold and streamline workflows that have historically been manual. To succeed, founders need deep knowledge of their vertical and a clear understanding of how to implement AI for real-world results. Above all, they must have the vision and drive to realize the full potential of AI-native applications, transforming industries and redefining service delivery. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Strawberry AI Models

Strawberry AI Models

Since OpenAI introduced its “Strawberry” AI models, something intriguing has unfolded. The o1-preview and o1-mini models have quickly gained attention for their superior step-by-step reasoning, offering a structured glimpse into problem-solving. However, behind this polished façade, a hidden layer of the AI’s mind remains off-limits—an area OpenAI is determined to keep out of reach. Unlike previous models, the o1 series conceals its raw thought processes. Users only see the refined, final answer, generated by a secondary AI, while the deeper, unfiltered reasoning is locked away. Naturally, this secrecy has only fueled curiosity. Hackers, researchers, and enthusiasts are already working to break through this barrier. Using jailbreak techniques and clever prompt manipulations, they are seeking to uncover the AI’s raw chain of thought, hoping to reveal what OpenAI has concealed. Rumors of partial breakthroughs have circulated, though nothing definitive has emerged. Meanwhile, OpenAI closely monitors these efforts, issuing warnings and threatening account bans to those who dig too deep. On platforms like X, users have reported receiving warnings merely for mentioning terms like “reasoning trace” in their interactions with the o1 models. Even casual inquiries into the AI’s thinking process seem to trigger OpenAI’s defenses. The company’s warnings are explicit: any attempt to expose the hidden reasoning violates their policies and could result in revoked access to the AI. Marco Figueroa, leader of Mozilla’s GenAI bug bounty program, publicly shared his experience after attempting to probe the model’s thought process through jailbreaks—he quickly found himself flagged by OpenAI. Now I’m on their ban list,” Figueroa revealed. So, why all the secrecy? OpenAI explained in a blog post titled Learning to Reason with LLMs that concealing the raw thought process allows for better monitoring of the AI’s decision-making without interfering with its cognitive flow. Revealing this raw data, they argue, could lead to unintended consequences, such as the model being misused to manipulate users or its internal workings being copied by competitors. OpenAI acknowledges that the raw reasoning process is valuable, and exposing it could give rivals an edge in training their own models. However, critics, such as independent AI researcher Simon Willison, have condemned this decision. Willison argues that concealing the model’s thought process is a blow to transparency. “As someone working with AI systems, I need to understand how my prompts are being processed,” he wrote. “Hiding this feels like a step backward.” Ultimately, OpenAI’s decision to keep the AI’s raw thought process hidden is about more than just user safety—it’s about control. By retaining access to these concealed layers, OpenAI maintains its lead in the competitive AI race. Yet, in doing so, they’ve sparked a hunt. Researchers, hackers, and enthusiasts continue to search for what remains hidden. And until that veil is lifted, the pursuit won’t stop. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
New Technology Risks

New Technology Risks

Organizations have always needed to manage the risks that come with adopting new technologies, and implementing artificial intelligence (AI) is no different. Many of the risks associated with AI are similar to those encountered with any new technology: poor alignment with business goals, insufficient skills to support the initiatives, and a lack of organizational buy-in. To address these challenges, executives should rely on best practices that have guided the successful adoption of other technologies, according to management consultants and AI experts. When it comes to AI, this includes: However, AI presents unique risks that executives must recognize and address proactively. Below are 15 areas of risk that organizations may encounter as they implement and use AI technologies: Managing AI Risks While the risks associated with AI cannot be entirely eliminated, they can be managed. Organizations must first recognize and understand these risks and then implement policies to mitigate them. This includes ensuring high-quality data for AI training, testing for biases, and continuous monitoring of AI systems to catch unintended consequences. Ethical frameworks are also crucial to ensure AI systems produce fair, transparent, and unbiased results. Involving the board and C-suite in AI governance is essential, as managing AI risk is not just an IT issue but a broader organizational challenge. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative ai energy consumption

Growing Energy Consumption in Generative AI

Growing Energy Consumption in Generative AI, but ROI Impact Remains Unclear The rising energy costs associated with generative AI aren’t always central in enterprise financial considerations, yet experts suggest IT leaders should take note. Building a business case for generative AI involves both obvious and hidden expenses. Licensing fees for large language models (LLMs) and SaaS subscriptions are visible expenses, but less apparent costs include data preparation, cloud infrastructure upgrades, and managing organizational change. Growing Energy Consumption in Generative AI. One under-the-radar cost is the energy required by generative AI. Training LLMs demands vast computing power, and even routine AI tasks like answering user queries or generating images consume energy. These intensive processes require robust cooling systems in data centers, adding to energy use. While energy costs haven’t been a focus for GenAI adopters, growing awareness has prompted the International Energy Agency (IEA) to predict a doubling of data center electricity consumption by 2026, attributing much of the increase to AI. Goldman Sachs echoed these concerns, projecting data center power consumption to more than double by 2030. For now, generative AI’s anticipated benefits outweigh energy cost concerns for most enterprises, with hyperscalers like Google bearing the brunt of these costs. Google recently reported a 13% increase in greenhouse gas emissions, citing AI as a major contributor and suggesting that reducing emissions might become more challenging with AI’s continued growth. Growing Energy Consumption in Generative AI While not a barrier to adoption, energy costs play into generative AI’s long-term viability, noted Scott Likens, global AI engineering leader at PwC, emphasizing that “there’s energy being used — you don’t take it for granted.” Energy Costs and Enterprise Adoption Generative AI users might not see a line item for energy costs, yet these are embedded in fees. Ryan Gross of Caylent points out that the costs are mainly tied to model training and inferencing, with each model query, though individually minor, adding up over time. These expenses are often spread across the customer base, as companies pay for generative AI access through a licensing model. A PwC sustainability study showed that GenAI power costs, particularly from model training, are distributed among licensees. Token-based pricing for LLM usage also reflects inferencing costs, though these charges have decreased. Likens noted that the largest expenses still come from infrastructure and data management rather than energy. Potential Efficiency Gains Though energy isn’t a primary consideration, enterprises could reduce consumption indirectly through technological advancements. Newer, more cost-efficient models like OpenAI’s GPT-4o mini are 60% less expensive per token than prior versions, enabling organizations to deploy GenAI on a larger scale while keeping costs lower. Small, fine-tuned models can be used to address latency and lower energy consumption, part of a “multimodel” approach that can provide different accuracy and latency levels with varying energy demands. Agentic AI also offers opportunities for cost and energy savings. By breaking down tasks and routing them through specialized models, companies can minimize latency and reduce power usage. According to Likens, using agentic architecture could cut costs and consumption, particularly when tasks are routed to more efficient models. Rising Data Center Energy Needs While enterprises may feel shielded from direct energy costs, data centers bear the growing power demand. Cooling solutions are evolving, with liquid cooling systems becoming more prevalent for AI workloads. As data centers face the “AI growth cycle,” the demand for energy-efficient cooling solutions has fueled a resurgence in thermal management investment. Liquid cooling, being more efficient than air cooling, is gaining traction due to the power demands of AI and high-performance computing. IDTechEx projects that data center liquid cooling revenue could exceed $50 billion by 2035. Meanwhile, data centers are exploring nuclear power, with AWS, Google, and Microsoft among those considering nuclear energy as a sustainable solution to meet AI’s power demands. Future ROI Considerations While enterprises remain shielded from the full energy costs of generative AI, careful model selection and architectural choices could help curb consumption. PwC, for instance, factors in the “carbon impact” as part of its GenAI deployment strategy, recognizing that energy considerations are now a part of the generative AI value proposition. As organizations increasingly factor sustainability into their tech decisions, energy efficiency might soon play a larger role in generative AI ROI calculations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
A Company in Transition

A Company in Transition

OpenAI Restructures: Increased Flexibility, But Raises Concerns OpenAI’s decision to restructure into a for-profit entity offers more freedom for the company and its investors but raises questions about its commitment to ethical AI development. Founded in 2015 as a nonprofit, OpenAI transitioned to a hybrid model in 2019 with the creation of a for-profit subsidiary. Now, its restructuring, widely reported this week, signals a shift where the nonprofit arm will no longer influence the day-to-day operations of the for-profit side. CEO Sam Altman is set to receive equity in the newly restructured company, which will operate as a benefit corporation (B Corp), similar to competitors like Anthropic and Sama. A Company in Transition This move comes on the heels of a turbulent year. OpenAI’s board initially voted to remove Altman over concerns about transparency, but later rehired him after significant backlash and the resignation of several board members. The company has seen a number of high-profile departures since, including co-founder Ilya Sutskever, who left in May to start Safe Superintelligence (SSI), an AI safety-focused venture that recently secured $1 billion in funding. This week, CTO Mira Murati, along with key research leaders Bob McGrew and Barret Zoph, also announced their departures. OpenAI’s restructuring also coincides with an anticipated multi-billion-dollar investment round involving major players such as Nvidia, Apple, and Microsoft, potentially pushing the company’s valuation to as high as $150 billion. Complex But Expected Move According to Michael Bennett, AI policy advisor at Northeastern University, the restructuring isn’t surprising given OpenAI’s rapid growth and increasingly complex structure. “Considering OpenAI’s valuation, it’s understandable that the company would simplify its governance to better align with investor priorities,” said Bennett. The transition to a benefit corporation signals a shift towards prioritizing shareholder interests, but it also raises concerns about whether OpenAI will maintain its ethical obligations. “By moving away from its nonprofit roots, OpenAI may scale back its commitment to ethical AI,” Bennett noted. Ethical and Safety Concerns OpenAI has faced scrutiny over its rapid deployment of generative AI models, including its release of ChatGPT in November 2022. Critics, including Elon Musk, have accused the company of failing to be transparent about the data and methods it uses to train its models. Musk, a co-founder of OpenAI, even filed a lawsuit alleging breach of contract. Concerns persist that the restructuring could lead to less ethical oversight, particularly in preventing issues like biased outputs, hallucinations, and broader societal harm from AI. Despite the potential risks, Bennett acknowledged that the company would have greater operational freedom. “They will likely move faster and with greater focus on what benefits their shareholders,” he said. This could come at the expense of the ethical commitments OpenAI previously emphasized when it was a nonprofit. Governance and Regulation Some industry voices, however, argue that OpenAI’s structure shouldn’t dictate its commitment to ethical AI. Veera Siivonen, co-founder and chief commercial officer of AI governance vendor Saidot, emphasized the role of regulation in ensuring responsible AI development. “Major players like Anthropic, Cohere, and tech giants such as Google and Meta are all for-profit entities,” Siivonen said. “It’s unfair to expect OpenAI to operate under a nonprofit model when others in the industry aren’t bound by the same restrictions.” Siivonen also pointed to OpenAI’s participation in global AI governance initiatives. The company recently signed the European Union AI Pact, a voluntary agreement to adhere to the principles of the EU’s AI Act, signaling its commitment to safety and ethics. Challenges for Enterprises The restructuring raises potential concerns for enterprises relying on OpenAI’s technology, said Dion Hinchcliffe, an analyst with Futurum Group. OpenAI may be able to innovate faster under its new structure, but the reduced influence of nonprofit oversight could make some companies question the vendor’s long-term commitment to safety. Hinchcliffe noted that the departure of key staff could signal a shift away from prioritizing AI safety, potentially prompting enterprises to reconsider their trust in OpenAI. New Developments Amid Restructuring Despite the ongoing changes, OpenAI continues to roll out new technologies. The company recently introduced a new moderation model, “omni-moderation-latest,” built on GPT-4o. This model, available through the Moderation API, enables developers to flag harmful content in both text and image outputs. A Company in Transition As OpenAI navigates its restructuring, balancing rapid innovation with maintaining ethical standards will be crucial to sustaining enterprise trust and market leadership. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI Agents Connect Tool Calling and Reasoning

AI Agents Connect Tool Calling and Reasoning

AI Agents: Bridging Tool Calling and Reasoning in Generative AI Exploring Problem Solving and Tool-Driven Decision Making in AI Introduction: The Emergence of Agentic AI Recent advancements in libraries and low-code platforms have simplified the creation of AI agents, often referred to as digital workers. Tool calling stands out as a key capability that enhances the “agentic” nature of Generative AI models, enabling them to move beyond mere conversational tasks. By executing tools (functions), these agents can act on your behalf and tackle intricate, multi-step problems requiring sound decision-making and interaction with diverse external data sources. This insight explores the role of reasoning in tool calling, examines the challenges associated with tool usage, discusses common evaluation methods for tool-calling proficiency, and provides examples of how various models and agents engage with tools. Reasoning as a Means of Problem-Solving Successful agents rely on two fundamental expressions of reasoning: reasoning through evaluation and planning, and reasoning through tool use. While both reasoning expressions are vital, they don’t always need to be combined to yield powerful solutions. For instance, OpenAI’s new o1 model excels in reasoning through evaluation and planning, having been trained to utilize chain of thought effectively. This has notably enhanced its ability to address complex challenges, achieving human PhD-level accuracy on benchmarks like GPQA across physics, biology, and chemistry, and ranking in the 86th-93rd percentile on Codeforces contests. However, the o1 model currently lacks explicit tool calling capabilities. Conversely, many models are specifically fine-tuned for reasoning through tool use, allowing them to generate function calls and interact with APIs effectively. These models focus on executing the right tool at the right moment but may not evaluate their results as thoroughly as the o1 model. The Berkeley Function Calling Leaderboard (BFCL) serves as an excellent resource for comparing the performance of various models on tool-calling tasks and provides an evaluation suite for assessing fine-tuned models against challenging scenarios. The recently released BFCL v3 now includes multi-step, multi-turn function calling, raising the standards for tool-based reasoning tasks. Both reasoning types are powerful in their own right, and their combination holds the potential to develop agents that can effectively deconstruct complex tasks and autonomously interact with their environments. For more insights into AI agent architectures for reasoning, planning, and tool calling, check out my team’s survey paper on ArXiv. Challenges in Tool Calling: Navigating Complex Agent Behaviors Creating robust and reliable agents necessitates overcoming various challenges. In tackling complex problems, an agent often must juggle multiple tasks simultaneously, including planning, timely tool interactions, accurate formatting of tool calls, retaining outputs from prior steps, avoiding repetitive loops, and adhering to guidelines to safeguard the system against jailbreaks and prompt injections. Such demands can easily overwhelm a single agent, leading to a trend where what appears to an end user as a single agent is actually a coordinated effort of multiple agents and prompts working in unison to divide and conquer the task. This division enables tasks to be segmented and addressed concurrently by distinct models and agents, each tailored to tackle specific components of the problem. This is where models with exceptional tool-calling capabilities come into play. While tool calling is a potent method for empowering productive agents, it introduces its own set of challenges. Agents must grasp the available tools, choose the appropriate one from a potentially similar set, accurately format the inputs, execute calls in the correct sequence, and potentially integrate feedback or instructions from other agents or humans. Many models are fine-tuned specifically for tool calling, allowing them to specialize in selecting functions accurately at the right time. Key considerations when fine-tuning a model for tool calling include: Common Benchmarks for Evaluating Tool Calling As tool usage in language models becomes increasingly significant, numerous datasets have emerged to facilitate the evaluation and enhancement of model tool-calling capabilities. Two prominent benchmarks include the Berkeley Function Calling Leaderboard and the Nexus Function Calling Benchmark, both utilized by Meta to assess the performance of their Llama 3.1 model series. The recent ToolACE paper illustrates how agents can generate a diverse dataset for fine-tuning and evaluating model tool use. Here’s a closer look at each benchmark: Each of these benchmarks enhances our ability to evaluate model reasoning through tool calling. They reflect a growing trend toward developing specialized models for specific tasks and extending the capabilities of LLMs to interact with the real world. Practical Applications of Tool Calling If you’re interested in observing tool calling in action, here are some examples to consider, categorized by ease of use, from simple built-in tools to utilizing fine-tuned models and agents with tool-calling capabilities. While the built-in web search feature is convenient, most applications require defining custom tools that can be integrated into your model workflows. This leads us to the next complexity level. To observe how models articulate tool calls, you can use the Databricks Playground. For example, select the Llama 3.1 405B model and grant access to sample tools like get_distance_between_locations and get_current_weather. When prompted with, “I am going on a trip from LA to New York. How far are these two cities? And what’s the weather like in New York? I want to be prepared for when I get there,” the model will decide which tools to call and what parameters to provide for an effective response. In this scenario, the model suggests two tool calls. Since the model cannot execute the tools, the user must input a sample result to simulate. Suppose you employ a model fine-tuned on the Berkeley Function Calling Leaderboard dataset. When prompted, “How many times has the word ‘freedom’ appeared in the entire works of Shakespeare?” the model will successfully retrieve and return the answer, executing the required tool calls without the user needing to define any input or manage the output format. Such models handle multi-turn interactions adeptly, processing past user messages, managing context, and generating coherent, task-specific outputs. As AI agents evolve to encompass advanced reasoning and problem-solving capabilities, they will become increasingly adept at managing

Read More
OpenAI’s o1 model

OpenAI’s o1 model

The release of OpenAI’s o1 model has sparked some confusion. Unlike previous models that focused on increasing parameters and capabilities, this one takes a different approach. Let’s explore the technical distinctions first, share a real-world experience, and wrap up with some recommendations on when to use each model. Technical Differences The core difference is that o1 serves as an “agentic wrapper” around GPT-4 (or a similar model). This means it incorporates a layer of metacognition, or “thinking about thinking,” before addressing a query. Instead of immediately answering the question, o1 first evaluates the best strategy for tackling it by breaking it down into subtasks. Once this analysis is complete, o1 begins executing each subtask. Depending on the answers it receives, it may adjust its approach. This method resembles the “tree of thought” strategy, allowing users to see real-time explanations of the subtasks being addressed. For a deeper dive into agentic approaches, I highly recommend Andrew Ng’s insightful letters on the topic. However, this method comes with a cost—it’s about six times more expensive and approximately six times slower than traditional approaches. While this metacognitive process can enhance understanding, it doesn’t guarantee improved answers for straightforward factual queries or tasks like generating trivia questions, where simplicity may yield better results. Real-World Example To illustrate the practical implications, Tectonic began to deepen the understanding of variational autoencoders—a trend in multimodal LLMs. While we had a basic grasp of the concept, we had specific questions about their advantages over traditional autoencoders and the nuances of training them. This information isn’t easily accessible through a simple search; it’s more akin to seeking insight from a domain expert. To enhance our comprehension, we engaged with both GPT-4 and o1. We quickly noticed that o1’s responses were more thoughtful and facilitated a meaningful dialogue. In contrast, GPT-4 tended to recycle the same information, offering limited depth—much like how some people might respond in conversation. A particularly striking example occurred when we attempted to clarify our understanding. The difference was notable. o1 responded like a thoughtful colleague, addressing our specific points, while GPT-4 felt more like a know-it-all friend who rambled on, requiring me to sift through the information for valuable insights. Summary and Recommendations In essence, if we were to personify these models, GPT-4 would be the overzealous friend who dives into a stream of consciousness, while o1 would be the more attentive listener who takes a moment to reflect before delivering precise and relevant insights. Here are some scenarios where o1 may outperform GPT-4, justifying its higher cost: By leveraging these insights, you can better navigate the strengths of each model in your tasks and inquiries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Leader Salesforce

AI Leader Salesforce

Salesforce Is a Wild Mustang in the AI Race In the bustling world of artificial intelligence, Salesforce Inc. has emerged as an unsurpassed and true leader. “Salesforce?” one might wonder. The company known for its customer relationship management software? How can it be an AI leader if it is only focused on each department or division (or horse) is only focused on its own survival? AI Leader Salesforce. Herds of horses have structure, unique and important roles they each play. While they survival depends greatly on each members’ independece they must remain steadfast in the roles and responsibilities they carry to the entire herd. The lead stallion must be the protector. The lead mare must organize all the mothers and foals into obedient members of the herd. But they must all collaborate. AI Leader Salesforce To stay strong and competetive Salesforce is making bold strides in AI as well. Recently, the company became the first major tech firm to introduce a new class of generative AI tools known as “agents,” which have long been discussed by others but never fully realized. Unlike its competitors, Salesforce is upfront about how these innovative tools might impact employment. This audacious approach could be the key to propelling the company ahead in the AI race, particularly as newer players like OpenAI and Anthropic make their moves. Marc Benioff, Salesforce’s dynamic CEO, is driving this change. Known for his unconventional strategies that helped propel Salesforce to the forefront of the software-as-a-service (SaaS) revolution, Benioff has secured a client base that includes 90% of Fortune 500 companies, such as Walt Disney Co. and Ford Motor Co. Salesforce profits from subscriptions to applications like Sales Cloud and Service Cloud, which help businesses manage their sales and customer service processes. At the recent Dreamforce conference, Salesforce unveiled Agentforce, a new service that enables customers to deploy autonomous AI-powered agents. If Benioff himself is the alpha herd leader, Agentforce may well be the lead mare. Salesforce distinguishes itself by replacing traditional chatbots with these new agents. While chatbots, powered by technologies from companies like OpenAI, Google, and Anthropic, typically handle customer inquiries, agents can perform actions such as filing complaints, booking appointments, or updating shipping addresses. The notion of AI “taking action” might seem risky, given that generative models can sometimes produce erroneous results. Imagine an AI mishandling a booking. However, Salesforce is confident that this won’t be an issue. “Hallucinations go down to zero because [Agentforce] is only allowed to generate content from the sources you’ve trained it on,” says Bill Patterson, corporate strategy director at Salesforce. This approach is touted as more reliable than models that scrape the broader internet, which can include inaccurate information. Salesforce’s willingness to confront a typically sensitive issue — the potential job displacement caused by AI — is also noteworthy. Unlike other AI companies that avoid discussing the impact of cost-cutting on employment, Salesforce openly addresses it. For instance, education publisher John Wiley & Sons Inc. reported that using Agentforce reduced the time spent answering customer inquiries by nearly 50% over three months. This efficiency meant Wiley did not need to hire additional staff for the back-to-school season. In the herd, the leader must acknowledge some of his own offspring will have to join other herds, there is a genetic survival of the fittest factor. I would suspect Benioff will re-train and re-purpose as many of the Salesforce family as he can, rather than seeing them leave the herd. Benioff highlighted this in his keynote, asking, “What if you could surge your service organization and your sales organization without hiring more people?” That’s the promise of Agentforce. And what if? Imagine the herd leader having to be always the alpha, always on guard, always in protective mode. When does he slngeep, eat, rest, and recuperate? Definitely not by bringing in another herd leader. The two inevitably come to arms each excerting their dominance until one is run off by the other, to survive on his own. The herd leader needs to clone himself, create additional herd, or corporate, assets to help him do his job better. Enter the power behind Salesforce’s long history with Artificial Intelligence. The effectiveness of Salesforce’s tools in delivering a return on investment remains to be seen, especially as many businesses struggle to evaluate the success of generative AI. Nonetheless, Salesforce poses a significant challenge to newer firms like OpenAI and Anthropic, which have privately acknowledged their use of Salesforce’s CRM software. For many chief innovation officers, it’s easier to continue leveraging Salesforce’s existing platform rather than adopt new technologies. Like the healthiest of the band of Mustangs, the most skilled and aggressive will thrive and survive. Salesforce’s established presence and broad distribution put it in a strong position at a time when large companies are often hesitant to embrace new tech. Its fearless approach to job displacement suggests the company is poised to profit significantly from its AI venture. As a result, Salesforce may well become a formidable competitor in the AI world. Furthermore taking its own investment in AI education to new heights, one can believe that Salesforce has an eye on people and not just profits. Much like the lead stallion in a wild herd, Salesforce is protecting itself and its biggest asset, its people! By Tectonic’s Salesforce Solutions Architect, Shannan Hearne Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Open AI Update

Open AI Update

OpenAI has established itself as a leading force in the generative AI space, with its ChatGPT being one of the most widely recognized AI tools. Powered by the GPT series of large language models (LLMs), as of September 2024, ChatGPT primarily uses GPT-4o and GPT-3.5. This insight provides an Open AI Update. In August and September 2024, rumors circulated about a new model from OpenAI, codenamed “Strawberry.” Initially, it was unclear if this model would be a successor to GPT-4o or something entirely different. On September 12, 2024, the mystery was resolved with the official launch of OpenAI’s o1 models, including o1-preview and o1-mini. What is OpenAI o1? OpenAI o1 is a new family of LLMs optimized for advanced reasoning tasks. Unlike earlier models, o1 is designed to improve problem-solving by reasoning through queries rather than just generating quick responses. This deeper processing aims to produce more accurate answers to complex questions, particularly in fields like STEM (science, technology, engineering, and mathematics). The o1 models, currently available in preview form, are intended to provide a new type of LLM experience beyond what GPT-4o offers. Like all OpenAI LLMs, the o1 series is built on transformer architecture and can be used for tasks such as content summarization, new content generation, question answering, and writing code. Key Features of OpenAI o1 The standout feature of the o1 models is their ability to engage in multistep reasoning. By adopting a “chain-of-thought” approach, o1 models break down complex problems and reason through them iteratively. This makes them particularly adept at handling intricate queries that require a more thoughtful response. The initial September 2024 launch included two models: Use Cases for OpenAI o1 The o1 models can perform many of the same functions as GPT-4o, such as answering questions, summarizing content, and generating text. However, they are particularly suited for tasks that benefit from enhanced reasoning, including: Availability and Access The o1-preview and o1-mini models are available to users of ChatGPT Plus and Team as of September 12, 2024. OpenAI plans to extend access to ChatGPT Enterprise and Education users starting September 19, 2024. While free ChatGPT users do not have access to these models at launch, OpenAI intends to introduce o1-mini to free users in the future. Developers can also access the models through OpenAI’s API, and third-party platforms such as Microsoft Azure AI Studio and GitHub Models offer integration. Limitations of OpenAI o1 As preview models, o1 comes with certain limitations: Enhancing Safety with OpenAI o1 To ensure safety, OpenAI released a System Card that outlines how the o1 models were evaluated for risks like cybersecurity threats, persuasion, and model autonomy. The o1 models improve safety through: GPT-4o vs. OpenAI o1 Here’s a quick comparison between GPT-4o and OpenAI’s new o1 models: Feature GPT-4o o1 Models Release Date May 13, 2024 Sept. 12, 2024 Model Variants Single model Two variants: o1-preview and o1-mini Reasoning Capabilities Good Enhanced, especially for STEM fields Mathematics Olympiad Score 13% 83% Context Window 128K tokens 128K tokens Speed Faster Slower due to in-depth reasoning Cost (per million tokens) Input: $5; Output: $15 o1-preview: $15 input, $60 output; o1-mini: $3 input, $12 output Safety and Alignment Standard Enhanced safety, better jailbreak resistance OpenAI’s o1 models bring a new level of reasoning and accuracy, making them a promising advancement in generative AI. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
How to Achieve AI Democratization

How to Achieve AI Democratization

AI democratization empowers non-experts by placing AI tools in the hands of everyday users, enabling them to harness the technology’s potential without requiring specialized technical skills. Today, IT leaders are increasingly focused on expanding AI’s benefits across the enterprise. The growing number of AI-based tools is making this more achievable. In some respects, democratization extends the concept of low- and no-code development—allowing non-developers to create software—into the realm of AI. However, it’s also about ensuring data is accessible and fostering data literacy throughout the organization. This doesn’t mean every employee needs to write machine learning scripts. Instead, it means business professionals should understand AI’s potential, identify relevant use cases, and apply insights to drive business outcomes. Achieving AI democratization is feasible, thanks to decentralized governance models and the emergence of AI-focused services. However, as with any new technology, democratization brings both benefits and challenges. How to Achieve AI Democratization AI is no longer reserved for experts. Tools like Google Colab and Microsoft’s Azure OpenAI Service have simplified AI development, enabling more employees to participate by writing and sharing code for various projects. To maximize the impact, enterprises must train business users on the basics of AI and how it can enhance their daily work. According to Arpit Mehra, Practice Director at Everest Group, decentralized governance models can help organizations build strategies for data and technology learning. Key strategies include: Arun Chandrasekaran, VP and Analyst at Gartner, also advises companies to focus on intelligent applications in areas such as customer engagement and talent acquisition, which can provide specialized training. Benefits and Challenges of AI Democratization AI democratization can significantly expand an organization’s capabilities. By placing AI in the hands of more employees, businesses reduce barriers to adoption, cut costs, and create highly accurate AI models. “Making AI more accessible broadens the scope of what businesses can achieve,” said Michael Shehab, PwC U.S. Technology and Innovation Leader. AI democratization also helps companies address IT talent shortages by upskilling employees and enabling them to integrate AI into their workflows. This approach improves productivity, allowing businesses to more easily spot trends and patterns within large data sets. However, challenges also arise. If AI is implemented without proper oversight, the technology is susceptible to bias. Poor training could lead to decision-making based on inaccurate or skewed data. Business leaders must ensure they understand who is using AI tools and establish standards for responsible use. Without careful testing, AI applications can automate mistakes that go unnoticed but may cause significant issues. Ed Murphy, SVP and Head of Data Science at 1010data, emphasizes the importance of testing to prevent these errors. To mitigate risks, organizations should invest in upskilling and reskilling employees. A well-defined training plan will enable nontechnical teams to participate in AI adoption and deployment effectively. Mehra from Everest Group also suggests exploring MLOps technologies to simplify AI development and streamline processes. Ultimately, AI democratization will benefit businesses that recognize AI’s potential beyond a small group of experts. While the benefits are clear, organizations must remain vigilant about the risks to ensure successful AI integration and reap the rewards of their efforts. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Wordle Today

Most people are familiar with Wordle by now. It’s that simple yet addictive game where players try to guess a five-letter word within six attempts. Introducing WordMap: Guess the Word of the Day A few weeks ago, while using semantic search in a Retrieval-Augmented Generation (RAG) system (for those curious about RAG, there’s more information in a previous insight), an idea emerged. What if there were a game like Wordle, but instead of guessing a word based on its letter positions, players guessed the word of the day by how close their guesses were in meaning? Players would input various words, and the game would score each one based on its semantic similarity to the target word, evaluating how related the guesses are in terms of meaning or context. The goal would be to guess the word in as few tries as possible, though without a limit on the number of attempts. This concept led to the creation of ☀️ WordMap! To develop the game, it was necessary to embed both the user’s input word and the word of the day, then calculate how semantically similar they were. The game would normalize the score between 0 and 100, displaying it in a clean, intuitive user interface. Diagram of the Workflow The Embedding ChallengeRAGs are frequently used for searching relevant data based on an input. The challenge in this case was dealing with individual words instead of full paragraphs, making the context limited. There are two types of embeddings: word-level and sentence-level. While word-level embeddings might seem like the logical choice, sentence-level embeddings were chosen for simplicity. Word-Level Embeddings Word-level embeddings represent individual words as vectors in a vector space, with the premise that words with similar meanings tend to appear in similar contexts. Key Features However, word embeddings treat words in isolation, which is a limitation. For instance, the word “bank” could refer to either a financial institution or the side of a river, depending on the context. Sentence-Level Embeddings Sentence embeddings represent entire sentences (or paragraphs) as vectors, capturing the meaning by considering the order and relationships between words. Key Features The downside is that sentence embeddings require more computational resources, and longer sentences may lose some granularity. Why Sentence Embeddings Were Chosen The answer lies in simplicity. Most embedding models readily available today are sentence-based, such as OpenAI’s text-embedding-3-large. While Word2Vec could have been an option, it would have required loading a large pre-trained model. Moreover, models like Word2Vec need vast amounts of training data to be precise. Using sentence embeddings isn’t entirely inaccurate, but it does come with certain limitations. Challenges and SolutionsOne limitation was accuracy, as the model wasn’t specifically trained to embed single words. To improve precision, the input word was paired with its dictionary definition, although this method has its own drawbacks, especially when a word has multiple meanings. Another challenge was that semantic similarity scores were relatively low. For instance, semantically close guesses often didn’t exceed a cosine similarity score of 0.45. To avoid discouraging users, the scores were normalized to provide more realistic feedback. The Final Result 🎉The game is available at WordMap, and it’s ready for players to enjoy! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
chatGPT open ai 01

ChatGPT Open AI o1

OpenAI has firmly established itself as a leader in the generative AI space, with its ChatGPT being one of the most well-known applications of AI today. Powered by the GPT family of large language models (LLMs), ChatGPT’s primary models, as of September 2024, are GPT-4o and GPT-3.5. In August and September 2024, rumors surfaced about a new model from OpenAI, codenamed “Strawberry.” Speculation grew as to whether this was a successor to GPT-4o or something else entirely. The mystery was resolved on September 12, 2024, when OpenAI launched its new o1 models, including o1-preview and o1-mini. What Is OpenAI o1? The OpenAI o1 family is a series of large language models optimized for enhanced reasoning capabilities. Unlike GPT-4o, the o1 models are designed to offer a different type of user experience, focusing more on multistep reasoning and complex problem-solving. As with all OpenAI models, o1 is a transformer-based architecture that excels in tasks such as content summarization, content generation, coding, and answering questions. What sets o1 apart is its improved reasoning ability. Instead of prioritizing speed, the o1 models spend more time “thinking” about the best approach to solve a problem, making them better suited for complex queries. The o1 models use chain-of-thought prompting, reasoning step by step through a problem, and employ reinforcement learning techniques to enhance performance. Initial Launch On September 12, 2024, OpenAI introduced two versions of the o1 models: Key Capabilities of OpenAI o1 OpenAI o1 can handle a variety of tasks, but it is particularly well-suited for certain use cases due to its advanced reasoning functionality: How to Use OpenAI o1 There are several ways to access the o1 models: Limitations of OpenAI o1 As an early iteration, the o1 models have several limitations: How OpenAI o1 Enhances Safety OpenAI released a System Card alongside the o1 models, detailing the safety and risk assessments conducted during their development. This includes evaluations in areas like cybersecurity, persuasion, and model autonomy. The o1 models incorporate several key safety features: GPT-4o vs. OpenAI o1: A Comparison Here’s a side-by-side comparison of GPT-4o and OpenAI o1: Feature GPT-4o o1 Models Release Date May 13, 2024 Sept. 12, 2024 Model Variants Single Model Two: o1-preview and o1-mini Reasoning Capabilities Good Enhanced, especially in STEM fields Performance Benchmarks 13% on Math Olympiad 83% on Math Olympiad, PhD-level accuracy in STEM Multimodal Capabilities Text, images, audio, video Primarily text, with developing image capabilities Context Window 128K tokens 128K tokens Speed Fast Slower due to more reasoning processes Cost (per million tokens) Input: $5; Output: $15 o1-preview: $15 input, $60 output; o1-mini: $3 input, $12 output Availability Widely available Limited to specific users Features Includes web browsing, file uploads Lacks some features from GPT-4o, like web browsing Safety and Alignment Focus on safety Improved safety, better resistance to jailbreaking ChatGPT Open AI o1 OpenAI o1 marks a significant advancement in reasoning capabilities, setting a new standard for complex problem-solving with LLMs. With enhanced safety features and the ability to tackle intricate tasks, o1 models offer a distinct upgrade over their predecessors. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Large Action Models and AI Agents

Large Action Models and AI Agents

The introduction of LAMs marks a significant advancement in AI, focusing on actionable intelligence. By enabling robust, dynamic interactions through function calling and structured output generation, LAMs are set to redefine the capabilities of AI agents across industries.

Read More
gettectonic.com