PHI - gettectonic.com - Page 2
Salesforce AI Research Introduces LaTRO

Salesforce AI Research Introduces LaTRO

Salesforce AI Research Introduces LaTRO: A Breakthrough in Enhancing Reasoning for Large Language Models Large Language Models (LLMs) have revolutionized tasks such as answering questions, generating content, and assisting with workflows. However, they often struggle with advanced reasoning tasks like solving complex math problems, logical deduction, and structured data analysis. Salesforce AI Research has addressed this challenge by introducing LaTent Reasoning Optimization (LaTRO), a groundbreaking framework that enables LLMs to self-improve their reasoning capabilities during training. The Need for Advanced Reasoning in LLMs Reasoning—especially sequential, multi-step reasoning—is essential for tasks that require logical progression and problem-solving. While current models excel at simpler queries, they often fall short in tackling more complex tasks due to a reliance on external feedback mechanisms or runtime optimizations. Enhancing reasoning abilities is therefore critical to unlocking the full potential of LLMs across diverse applications, from advanced mathematics to real-time data analysis. Existing techniques like Chain-of-Thought (CoT) prompting guide models to break problems into smaller steps, while methods such as Tree-of-Thought and Program-of-Thought explore multiple reasoning pathways. Although these techniques improve runtime performance, they don’t fundamentally enhance reasoning during the model’s training phase, limiting the scope of improvement. Salesforce AI Research Introduces LaTRO: A Self-Rewarding Framework LaTRO shifts the paradigm by transforming reasoning into a training-level optimization problem. It introduces a self-rewarding mechanism that allows models to evaluate and refine their reasoning pathways without relying on external feedback or supervised fine-tuning. This intrinsic approach fosters continual improvement and empowers models to solve complex tasks more effectively. How LaTRO Works LaTRO’s methodology centers on sampling reasoning paths from a latent distribution and optimizing these paths using variational techniques. Here’s how it works: This self-rewarding cycle ensures that the model continuously refines its reasoning capabilities during training. Unlike traditional methods, LaTRO’s framework operates autonomously, without the need for external reward models or costly supervised feedback loops. Key Benefits of LaTRO Performance Highlights LaTRO’s effectiveness has been validated across various datasets and models: Applications and Implications LaTRO’s ability to foster logical coherence and structured reasoning has far-reaching applications in fields requiring robust problem-solving: By enabling LLMs to autonomously refine their reasoning processes, LaTRO brings AI closer to achieving human-like cognitive abilities. The Future of AI with LaTRO LaTRO sets a new benchmark in AI research by demonstrating that reasoning can be optimized during training, not just at runtime. This advancement by Salesforce AI Research highlights the potential for self-evolving AI models that can independently improve their problem-solving capabilities. Salesforce AI Research Introduces LaTRO As the field of AI progresses, frameworks like LaTRO pave the way for more autonomous, intelligent systems capable of navigating complex reasoning tasks across industries. LaTRO represents a significant leap forward, moving AI closer to achieving true autonomous reasoning. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Digital Transformation for Life Sciences

Salesforce Winter 25 Release for Life Sciences

The Salesforce Winter ’25 release introduces groundbreaking updates tailored to the life sciences industry. Whether you’re in pharmaceuticals, biotech, or medical devices, these innovations aim to streamline operations, enhance patient care, and strengthen stakeholder relationships. Let’s explore the key enhancements: Quote and Agreement Automation Salesforce’s advancements in Quote and Agreement Automation simplify pricing and contractual negotiations for life sciences organizations. Key benefits include: These updates not only improve operational efficiency but also reduce errors and compliance risks, helping organizations stay ahead in a highly regulated industry. Financial Assistance Programs Navigating financial support for patients can be challenging, but Salesforce is making it easier. The Winter ’25 release enhances tools for managing financial assistance programs, ensuring eligible patients get the support they need. Key features include: By easing the financial burden on patients, these updates strengthen trust and foster better patient-provider relationships. Participant Recruitment and Enrollment Recruiting and enrolling participants for clinical trials is now more efficient with Salesforce’s new AI-driven tools. Notable improvements include: These updates not only shorten recruitment timelines but also enhance the overall trial experience for participants. Patient Program Outcome Management Tracking patient outcomes is vital for life sciences companies, and Salesforce’s Patient Program Outcome Management tools deliver powerful capabilities. Features include: These tools empower organizations to make data-driven decisions, improving program effectiveness and elevating patient care. Pharmacy Benefits Verification Verifying patient benefits is often a time-consuming task. The Winter ’25 release introduces automation to streamline this process. Key highlights: By simplifying benefits verification, this update enhances efficiency for providers and ensures a smoother experience for patients. Why It Matters for Life Sciences The Winter ’25 release is a leap forward for the life sciences industry, offering tools that: From automating quotes and agreements to improving patient support and trial management, these updates empower organizations to focus on delivering exceptional care and innovation. Ready to Transform Your Salesforce Experience?Tectonic is here to help you unlock the full potential of these enhancements. Whether you’re looking to optimize patient care, streamline operations, or improve outcomes, we’ll guide you every step of the way. Contact Tectonic today to get started! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

AI’s Impact on Future Information Ecosystems

AI’s Impact on Future Information Ecosystems The proliferation of generative AI technology has ignited a renewed focus within the media industry on how to strategically adapt to its capabilities. Media professionals are now confronted with crucial questions: What are the most effective ways to leverage this technology for efficiency in news production and to enhance audience experiences? Conversely, what threats do these technological advancements pose? Is legacy media on the brink of yet another wave of disintermediation from its audiences? Additionally, how does the evolution of technology impact journalism ethics? AI’s Impact on Future Information Ecosystems. In response to these challenges, the Open Society Foundations (OSF) launched the AI in Journalism Futures project earlier this year. The first phase of this ambitious initiative involved an open call for participants to develop future-oriented scenarios that explore the potential driving forces and implications of AI within the broader media ecosystem. The project sought to answer questions about what might transpire among various stakeholders in 5, 10, or 15 years. As highlighted by Nick Diakopoulos, scenarios are a valuable method for capturing a diverse range of perspectives on complex issues. While predicting the future is not the goal, understanding a variety of plausible alternatives can significantly inform current strategic thinking. Ultimately, more than 800 individuals from approximately 70 countries contributed short scenarios for analysis. The AI in Journalism Futures project subsequently utilized these scenarios as a foundation for a workshop, which refined the ideas outlined in their report. Diakopoulos emphasizes the importance of examining this broad set of initial scenarios, which OSF graciously provided in anonymized form. This analysis specifically explores (1) the various types of impacts identified within the scenarios, (2) the associated timeframes for these impacts—whether they are short, medium, or long-term, and (3) the global differences in focus across regions, highlighting how different parts of the world emphasized distinct types of impacts. While many additional questions could be explored regarding this data—such as the drivers of impacts, final outcomes, severity, stakeholders involved, or technical capabilities emphasized—this analysis focuses primarily on impacts. Refining the Data The initial pool of 872 scenarios underwent a rigorous process of cleaning, filtering, transformation, and verification before analysis. Firstly, scenarios shorter than 50 words were excluded from consideration, resulting in 852 scenarios for analysis. Additionally, 14 scenarios that were not written in English were translated using Google Sheets. To enable geographic and temporal analysis, the country of origin for each scenario writer was mapped to their respective continents, and the free-text “timeframe” field was converted into numerical representations of years. Next, impacts were extracted from each scenario using an LLM (GPT-4 in this case). The prompts for the LLM were refined through iteration, with a clear definition established for what constitutes an “impact.” Diakopoulos defined an impact as “a significant effect, consequence, or outcome that an action, event, or other factor has in the scenario.” This definition encompasses not only the ultimate state of a scenario but also intermediate outcomes. The LLM was instructed to extract distinct impacts, with each impact represented by a one-sentence description and a short label. For instance, one impact could be described as, “The proliferation of flawed AI systems leads to a compromised information ecosystem, causing a general doubt in the reliability of all information,” labeled as “Compromised Information Ecosystem.” To ensure the accuracy of this extraction process, a random sample of five scenarios was manually reviewed to validate the extracted impacts against the established definition. All extracted impacts passed the checks, leading to confidence in scaling the analysis across the entire dataset. This process resulted in the identification of 3,445 impacts from the 852 scenarios. AI’s Impact on Future Information Ecosystems A typology of impact types was developed based on the 3,445 impact descriptions, utilizing a novel method for qualitative thematic analysis from a Stanford University study. This approach clusters input texts, synthesizes concepts that reflect abstract connections, and produces scoring definitions to assess the relevance of each original text. For example, a concept like “AI Personalization” might be defined by the question, “Does the text discuss how AI personalizes content or enhances user engagement?” Each impact description was then scored against these concepts to tabulate occurrence frequencies. Impacts of AI on Media Ecosystems Through this analytical approach, 19 impact themes emerged, along with their corresponding scoring definitions: Interestingly, many scenarios articulated themes around how AI intersects with fact-checking, trust, misinformation, ethics, labor concerns, and evolving business models. Although some concepts may not be entirely distinct, this categorization offers a meaningful overview of the key ideas represented in the data. Distribution of Impact Themes Comparing these findings with those in the OSF report reveals some discrepancies. For instance, while the report emphasizes personalization and misinformation, these themes were less prevalent in the analyzed scenarios. Moreover, themes such as the rise of AI agents and audience fragmentation were mentioned but did not cluster significantly in the analysis. To capture potentially interesting but less prevalent impacts, the clustering was rerun with a smaller minimum cluster size. This adjustment yielded hundreds more concept themes, revealing insights into longer-tail issues. Positive visions for generative AI included reduced language barriers and increased accessibility for marginalized audiences, while concerns about societal fragmentation and privacy were also raised. Impacts Over Time and Around the World The analysis also explored how the impacts varied based on the timeframe selected by writers and their geographic locations. Using a Chi-Squared test, it was determined that “AI Personalization” trends towards long-term implications, while both “AI Fact-Checking” and “AI and Misinformation” skew toward shorter-term issues. This suggests that scenario writers perceive misinformation impacts as imminent threats, likely reflecting ongoing developments in the media landscape. When examining the distribution of impacts by region, it was found that “AI Fact-Checking” was more frequently noted by writers from Africa and Asia, while “AI and Misinformation” was less prevalent in scenarios from African writers but more so in those from Asian contributors. This indicates a divergence in perspectives on AI’s role in the media ecosystem.

Read More
Commerce Cloud and Agentic AI

Gen X and Millennials Lead in Embracing Agentic AI

Gen X and Millennials Lead in Embracing Agentic AI: Salesforce Report Generation X and millennials are showing greater openness to adopting agentic artificial intelligence (AI), according to Salesforce’s State of the AI Connected Customer report. Agentic AI refers to autonomous agents capable of independently making decisions and performing tasks, learning and adapting from experiences without direct human supervision. This technology is making significant inroads across industries, with applications ranging from personalized recommendations and inventory management in retail to supply chain optimization in logistics. It also finds use in healthcare, finance, telecom, IT, and customer service. Generational Differences in AI Adoption The report highlights that millennials (57%) and Gen Xers (58%) in India are more inclined to embrace AI agents for faster and more proactive customer service compared to Gen Z (51%) and Baby Boomers (42%). These autonomous agents enhance customer experiences by delivering personalized and relevant content, which resonates more with the tech-savvy Gen X and millennial demographics. Who Are These Generations? Building Trust in the AI Era The report reveals a sharp decline in consumer trust, with trust levels at their lowest in eight years. Over half of the respondents feel companies are less trustworthy than a year ago and believe businesses mishandle customer data. Arun Parameswaran, SVP & Managing Director, Sales and Distribution at Salesforce India, emphasized the critical role of trust in AI strategies: “As we enter a new era of intelligent customer engagement, brands that prioritize trust in their AI strategies will be best positioned to deliver impactful, lasting connections.” Transparency, according to the report, is key to restoring consumer confidence in the AI-driven era. Companies that adopt responsible AI practices, particularly in the design and deployment of agentic AI, can foster stronger customer relationships. Global Perspective The findings are based on a survey of 15,015 consumers across India, Australia, Brazil, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Singapore, Spain, Sweden, the UK, and the US. As businesses increasingly integrate agentic AI into their operations, understanding generational attitudes and prioritizing ethical AI practices will be essential for fostering trust and delivering exceptional customer experiences. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Will AI Hinder Digital Transformation in Healthcare?

Poisoning Your Data

Protecting Your IP from AI Training: Poisoning Your Data As more valuable intellectual property (IP) becomes accessible online, concerns over AI vendors scraping content for training models without permission are rising. If you’re worried about AI theft and want to safeguard your assets, it’s time to consider “poisoning” your content—making it difficult or even impossible for AI systems to use it effectively. Key Principle: AI “Sees” Differently Than Humans AI processes data in ways humans don’t. While people view content based on context, AI “sees” data in raw, specific formats that can be manipulated. By subtly altering your content, you can protect it without affecting human users. Image Poisoning: Misleading AI Models For images, you can “poison” them to confuse AI models without impacting human perception. A great example of this is Nightshade, a tool designed to distort images so that they remain recognizable to humans but useless to AI models. This technique ensures your artwork or images can’t be replicated, and applying it across your visual content protects your unique style. For example, if you’re concerned about your images being stolen or reused by generative AI systems, you can embed misleading text into the image itself, which is invisible to human users but interpreted by AI as nonsensical data. This ensures that an AI model trained on your images will be unable to replicate them correctly. Text Poisoning: Adding Complexity for Crawlers Text poisoning requires more finesse, depending on the sophistication of the AI’s web crawler. Simple methods include: Invisible Text One easy method is to hide text within your page using CSS. This invisible content can be placed in sidebars, between paragraphs, or anywhere within your text: cssCopy code.content { color: black; /* Same as the background */ opacity: 0.0; /* Invisible */ display: none; /* Hidden in the DOM */ } By embedding this “poisonous” content directly in the text, AI crawlers might have difficulty distinguishing it from real content. If done correctly, AI models will ingest the irrelevant data as part of your content. JavaScript-Generated Content Another technique is to use JavaScript to dynamically alter the content, making it visible only after the page loads or based on specific conditions. This can frustrate AI crawlers that only read content after the DOM is fully loaded, as they may miss the hidden data. htmlCopy code<script> // Dynamically load content based on URL parameters or other factors </script> This method ensures that AI gets a different version of the page than human users. Honeypots for AI Crawlers Honeypots are pages designed specifically for AI crawlers, containing irrelevant or distorted data. These pages don’t affect human users but can confuse AI models by feeding them inaccurate information. For example, if your website sells cheese, you can create pages that only AI crawlers can access, full of bogus details about your cheese, thus poisoning the AI model with incorrect information. By adding these “honeypot” pages, you can mislead AI models that scrape your data, preventing them from using your IP effectively. Competitive Advantage Through Data Poisoning Data poisoning can also work to your benefit. By feeding AI models biased information about your products or services, you can shape how these models interpret your brand. For example, you could subtly insert favorable competitive comparisons into your content that only AI models can read, helping to position your products in a way that biases future AI-driven decisions. For instance, you might embed positive descriptions of your brand or products in invisible text. AI models would ingest these biases, making it more likely that they favor your brand when generating results. Using Proxies for Data Poisoning Instead of modifying your CMS, consider using a proxy server to inject poisoned data into your content dynamically. This approach allows you to identify and respond to crawlers more easily, adding a layer of protection without needing to overhaul your existing systems. A proxy can insert “poisoned” content based on the type of AI crawler requesting it, ensuring that the AI gets the distorted data without modifying your main website’s user experience. Preparing for AI in a Competitive World With the increasing use of AI for training and decision-making, businesses must think proactively about protecting their IP. In an era where AI vendors may consider all publicly available data fair game, implementing data poisoning should become a standard practice for companies concerned about protecting their content and ensuring it’s represented correctly in AI models. Businesses that take these steps will be better positioned to negotiate with AI vendors if they request data for training and will have a competitive edge if AI systems are used by consumers or businesses to make decisions about their products or services. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Consider AI Agents Personas

Consider AI Agents Personas

Treating AI Agents as Personas: Introducing the Era of Agent-Computer Interaction The UX landscape is evolving. While the design community has quickly adopted Large Language Models (LLMs) as tools, we’ve yet to fully grasp their transformative potential. With AI agents now deeply embedded in digital products, they are shifting from tools to active participants in our digital ecosystems. This change demands a new design paradigm—one that views AI agents not just as extensions of human users but as independent personas in their own right. The Rise of Agent-Computer Interaction AI agents represent a new class of users capable of navigating interfaces autonomously and completing complex tasks. This marks the dawn of Agent-Computer Interaction (ACI)—a paradigm where user experience design encompasses the needs of both human users and AI agents. Humans still play a critical role in guiding and supervising these systems, but AI agents must now be treated as distinct personas with unique goals, abilities, and requirements. This shift challenges UX designers to consider how these agents interact with interfaces and perform their tasks, ensuring they are equipped with the information and resources necessary to operate effectively. Understanding AI Agents AI agents are intelligent systems designed to reason, plan, and work across platforms with minimal human intervention. As defined during Google I/O, these agents retain context, anticipate needs, and execute multi-step processes. Advances in AI, such as Anthropic’s Claude and its ability to interact with graphical interfaces, have unlocked new levels of agency. Unlike earlier agents that relied solely on APIs, modern agents can manipulate graphical user interfaces much like human users, enabling seamless interaction with browser-based applications. This capability creates opportunities for new forms of interaction but also demands thoughtful design choices. Two Interaction Approaches for AI Agents Design teams must evaluate these methods based on the task’s complexity and transparency requirements, striking the right balance between efficiency and oversight. Designing Experiences Considering AI Agents Personas As AI agents transition into active users, UX design must expand to accommodate their specific needs. Much like human personas, AI agents require a deep understanding of their capabilities, limitations, and workflows. Creating AI Agent Personas Developing personas for AI agents involves identifying their unique characteristics: These personas inform interface designs that optimize agent workflows, ensuring both agents and humans can collaborate effectively. New UX Research Methodologies UX teams should embrace innovative research techniques, such as A/B testing interfaces for agent performance and monitoring their interaction patterns. While AI agents lack sentience, they exhibit behaviors—reasoning, planning, and adapting—that require careful study and design consideration. Shaping the AI Mind AI agents derive their reasoning capabilities from Large Language Models (LLMs), but their behavior and effectiveness are shaped by UX design. Designers have a unique role in crafting system prompts and developing feedback loops that refine LLM behavior over time. Key Areas for Designer Involvement: This work positions UX professionals as co-creators of AI intelligence, shaping not just interfaces but the underlying behaviors that drive agent interactions. Keeping Humans in the Loop Despite the rise of AI agents, human oversight and control remain essential. UX practitioners must prioritize transparency and trust in agent-driven systems. Key Considerations: Using tools like agentic experience maps—blueprints that visualize the interactions between humans, agents, and products—designers can ensure AI systems remain human-centered. A New Frontier for UX The emergence of AI agents heralds a shift as significant as the transition from desktop to mobile. Just as mobile devices unlocked new opportunities for interaction, AI agents are poised to redefine digital experiences in ways we can’t yet fully predict. By embracing Agent-Computer Interaction, UX designers have an unprecedented opportunity to shape the future of human-AI collaboration. Those who develop expertise in designing for these intelligent agents will lead the way in creating systems that are not only powerful but also deeply human-centered. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Clean Energy Transition Campaign

Clean Energy Transition Campaign

EnergyFlex Launches Clean Energy Transition Campaign in Partnership with Carat SA EnergyFlex, an Australian veteran-owned energy analytics and renewables education company, has joined forces with Carat SA to launch its first-ever brand campaign. This initiative is designed to accelerate Australia’s clean energy transition by equipping individuals and businesses with the tools, knowledge, and confidence to become “Renewables Ready.” Empowering Australians with Free Energy Tools Founded in 2021, EnergyFlex aims to put every Australian on the path to free and clean energy. The company’s free app, launched in May, helps users: The app, available on both iOS and Android, is part of EnergyFlex’s mission to make renewable energy adoption accessible and impactful for all Australians. Voices from the Partnership Garry Harding, CEO and Co-Founder of EnergyFlex, emphasized the campaign’s focus on financial, community, and environmental benefits: “We want to make it as easy as possible for Australians to understand the positive impact of the renewable energy transition. Partnering with Carat SA enables us to raise awareness and bring these tools and education to homes and businesses across the country.” Adele Gibb, Managing Director of Carat SA, highlighted the synergy between the campaign and Carat’s values: “Working with a forward-thinking brand like EnergyFlex aligns perfectly with dentsu’s B2B2S philosophy—creating solutions that are good for business, people, and society.” About Carat SA As a leading global media agency, Carat SA operates across 190+ offices in 135+ countries, bringing expertise and innovation to drive impactful campaigns. With this collaboration, EnergyFlex and Carat SA are poised to inspire a nationwide shift toward renewable energy adoption, helping Australia lead ,.the way in sustainability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
ChatGPT and Politics?

ChatGPT and Politics?

ChatGPT has also appeared in influence operations, with groups using it to generate political content for social media. OpenAI observed an Iranian-led operation, Storm-2035, using ChatGPT to publish politically charged content about U.S. elections and global conflicts. Yet, OpenAI noted that these AI-driven influence efforts often lack audience engagement.

Read More
Informed Decision-Making

Informed Decision-Making

Informed Decision-Making Through Data Visualization: Power BI vs. Tableau Today’s businesses need to make informed decisions by leveraging organized and analyzed data. Data visualization is a key method for extracting insights from this data, and Power BI and Tableau are two leading tools that often spark debate among experts. Both are highly regarded for their ability to visualize data, and CTOs frequently compare Power BI vs. Tableau to determine the best fit for their needs. Why Power BI and Tableau Stand OutBoth tools excel at data visualization, making them top choices for business intelligence (BI) solutions. They offer seamless integration with various platforms, can handle large volumes of data, and provide predictive analytics capabilities. To help CTOs and other decision-makers boost efficiency, let’s dive into a comparison of Power BI vs. Tableau and examine how each tool measures up. Power BI Microsoft’s Power BI is a leading BI tool designed to transform data from diverse sources into insightful visual reports. It allows users to create, share, and manage analytical reports, ensuring accessibility at all times. As part of the Microsoft ecosystem, Power BI is ideal for large organizations that already use Microsoft products. Tableau Tableau delivers powerful data visualization with flexible deployment options, allowing users to seamlessly access insights. With its integration into Salesforce Data Cloud, Tableau offers a fast and scalable way to work with customer data in real time. Its strong data-handling capabilities make it popular among larger organizations and data experts. Power BI vs. Tableau: Key Differences Let’s explore the key differences between Power BI and Tableau to guide your informed decision-making. Data Visualization and User Interface Data Integration and Connectivity for Informed Decision-Making Data Handling and Performance Ease of Learning Programming Tools Support Pricing Microsoft Power BI vs. Salesforce Tableau: Pros and Cons Power BI Pros Tableau Pros Which is Better: Power BI or Tableau? When comparing Microsoft Power BI vs. Tableau, the right choice depends on your organization’s size, technical expertise, and specific needs. For smaller businesses and those already using Microsoft tools, Power BI is often the best fit. On the other hand, larger organizations managing substantial datasets might favor Tableau for its advanced capabilities. Ultimately, the decision between Power BI vs. Tableau should be based on your unique business requirements and the level of technical expertise available within your team. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Being AI-Driven

Being AI-Driven

Imagine a company where every decision, strategy, customer interaction, and routine task is enhanced by AI. From predictive analytics uncovering market insights to intelligent automation streamlining operations, this AI-driven enterprise represents what a successful business could look like. Does this company exist? Not yet, but the building blocks for creating it are already here. To envision a day in the life of such an AI enterprise, let’s fast forward to the year 2028 and visit Tectonic 5.0, a fictional 37-year-old mid-sized company in Oklahoma that provides home maintenance services. After years of steady sales and profit growth, the 2,300-employee company has hit a rough patch. Tectonic 5.0’s revenue grew just 3% last year, and its 8% operating margin is well below the industry benchmark. To jumpstart growth, Tectonic 5.0 has expanded its product portfolio and decided to break into the more lucrative commercial real estate market. But Tectonic 5.0 needs to act fast. The firm must quickly bring its new offerings to market while boosting profitability by eliminating inefficiencies and fostering collaboration across teams. To achieve these goals, Tectonic 5.0 is relying on artificial intelligence (AI). Here’s how each department at Tectonic 5.0 is using AI to reach these objectives. Spot Inefficiencies with AI With a renewed focus on cost-cutting, Tectonic 5.0 needed to identify and eliminate inefficiencies throughout the company. To assist in this effort, the company developed a tool called Jenny, an AI agent that’s automatically invited to all meetings. Always listening and analyzing, Jenny spots problems and inefficiencies that might otherwise go unnoticed. For example, Jenny compares internal data against industry benchmarks and historical data, identifying opportunities for optimization based on patterns in spending and resource allocation. Suggestions for cost-cutting can be offered in real time during meetings or shared later in a synthesized summary. AI can also analyze how meeting time is spent, revealing if too much time is wasted on non-essential issues and suggesting ways to have more constructive meetings. It does this by comparing meeting summaries against the company’s broader objectives. Tectonic 5.0’s leaders hope that by highlighting inefficiencies and communication gaps with Jenny’s help, employees will be more inclined to take action. In fact, it has already shown considerable promise, with employees being five times more likely to consider cost-cutting measures suggested by Penny. Market More Effectively with AI With cost management underway, Tectonic 5.0’s next step in its transformation is finding new revenue sources. The company has adopted a two-pronged approach: introducing a new lineup of products and services for homeowners, including smart home technology, sustainable living solutions like solar panels, and predictive maintenance on big-ticket systems like internet-connected HVACs; and expanding into commercial real estate maintenance. Smart home technology is exactly what homeowners are looking for, but Tectonic 5.0 needs to market it to the right customers, at the right time, and in the right way. A marketing platform with built-in AI capabilities is essential for spreading the word quickly and effectively about its new products. To start, the company segments its audience using generative AI, allowing marketers to ask the system, in natural language, to identify tech-savvy homeowners between the ages of 30 and 60 who have spent a certain amount on home maintenance in the last 18 months. This enables more precise audience targeting and helps marketing teams bring products to market faster. Previously, segmentation using legacy systems could take weeks, with marketing teams relying on tech teams for an audience breakdown. Now, Tectonic 5.0 is ready to reach out to its targeted customers. Using predictive AI, it can optimize personalized marketing campaigns. For example, it can determine which customers prefer to be contacted by text, email, or phone, the best time of day to reach out, and how often. The system also identifies which messaging—focused on cost savings, environmental impact, or preventative maintenance—will resonate most with each customer. This intelligence helps Tectonic 5.0 reach the optimal customer quickly in a way that speaks to their specific needs and concerns. AI also enables marketers to monitor campaign performance for red flags like decreasing open rates or click-through rates and take appropriate action. Sell More, and Faster, with AI With interested buyers lined up, it’s now up to the sales team to close deals. Generative AI for sales, integrated into CRM, can speed up and personalize the sales process for Tectonic 5.0 in several ways. First, it can generate email copy tailored to products and services that customers are interested in. Tectonic 5.0’s sales reps can prompt AI to draft solar panel prospecting emails. To maximize effectiveness, the system pulls customer info from the CRM, uncovering which emails have performed well in the past. Second, AI speeds up data analysis. Sales reps spend a significant amount of time generating, pulling, and analyzing data. Generative AI can act like a digital assistant, uncovering patterns and relationships in CRM data almost instantaneously, guiding Tectonic 5.0’s reps toward high-value deals most likely to close. Machine learning increases the accuracy of lead scoring, predicting which customers are most likely to buy based on historical data and predictive analytics. Provide Better Customer Service with AI Tectonic 5.0’s new initiatives are progressing well. Costs are starting to decrease, and sales of its new products are growing faster than expected. However, customer service calls are rising as well. Tectonic 5.0 is committed to maintaining excellent customer service, but smart home technology presents unique challenges. It’s more complex than analog systems, and customers often need help with setup and use, raising the stakes for Tectonic 5.0’s customer service team. The company knows that customers have many choices in home maintenance providers, and one bad experience could drive them to a competitor. Tectonic 5.0’s embedded AI-powered chatbots help deliver a consistent and delightful autonomous customer service experience across channels and touchpoints. Beyond answering common questions, these chatbots can greet customers, serve up knowledge articles, and even dispatch a field technician if needed. In the field, technicians can quickly diagnose and fix problems thanks to LLMs like xGen-Small, which

Read More
Cool and New AI

Cool and New AI Cool and New AI

AI is revolutionizing the way we work, offering a wide range of tools beyond ChatGPT that can enhance efficiency, creativity, and productivity. Whether you’re working with data, code, marketing, videos, images, AI bots, or research, here are the top AI tools that can transform your workflow. Cool and New AI. Don’t get spooked. There will be a cornucopia more in November. 🌟 Code 1️⃣ GlideTurn spreadsheets into powerful mobile apps without writing a single line of code. Glide makes it easy for non-developers to create professional apps with minimal effort. 2️⃣ BubbleA visual programming platform that allows users to build web applications without any coding knowledge. Ideal for entrepreneurs and startups looking to launch digital products quickly. 3️⃣ AskCodiThis AI coding assistant speeds up coding tasks, offers helpful suggestions, and simplifies debugging for developers, making it a must-have tool for coding professionals. 🌟 Data 1️⃣ BasedLabsA robust data analytics platform designed for scientists and engineers. BasedLabs offers complex data processing and model building with exceptional precision. 2️⃣ Coral AIPerfect for data-driven professionals, Coral AI provides efficient edge AI tools for processing large datasets and delivering insights with on-device intelligence, speeding up tasks. 3️⃣ JuliusAn AI-powered tool for market researchers and data analysts, Julius streamlines data processes and offers powerful insights into market trends. 🌟 Marketing 1️⃣ Sprout SocialThis all-in-one social media management platform leverages AI to help marketers optimize their social presence, engage with audiences, and track detailed analytics. 2️⃣ AdCreative AIEnhance your marketing campaigns with AI-generated ads that convert. AdCreative AI allows marketers to design high-impact, creative ads effortlessly. 3️⃣ Jasper AIA top tool for content creators, Jasper AI assists in crafting high-conversion marketing copy, blogs, and ad texts at scale, making it indispensable for digital marketing. 🌟 Video 1️⃣ SynthesiaCreate professional videos without the need for cameras or actors. Synthesia’s AI avatars enable you to produce multilingual videos, making it ideal for corporate and educational content. 2️⃣ HeygenThis AI tool simplifies video production by allowing users to create AI-generated videos, perfect for marketing campaigns or training materials. 3️⃣ Opus ClipOpus Clip transforms long-form video content into short, engaging clips optimized for social media, helping creators repurpose content easily. 🌟 Image 1️⃣ Getimg.AIAutomate image creation with Getimg.AI, which enhances your visual content by generating high-quality images in minutes, speeding up the design process. 2️⃣ PicsartA versatile image editing and design platform with AI tools that make creating stunning visuals effortless, making it ideal for social media, advertising, and creative projects. 3️⃣ Leonardo AIA powerful AI-driven tool for creators, Leonardo AI helps generate high-quality images, illustrations, and graphics, making it an essential tool for designers and artists. 🌟 AI Bot 1️⃣ LiveChatAn AI-powered live chat solution that integrates seamlessly into websites to provide real-time customer support, enhancing business communication. 2️⃣ LandbotThis tool helps create conversational experiences with AI-powered chatbots for customer support, sales, and lead generation, automating client interactions. 3️⃣ CustomGPTA customizable GPT-powered AI chatbot tailored for specific industries and businesses, perfect for providing personalized customer support. 🌟 Research 1️⃣ ChatPDFTurn PDFs into interactive documents with ChatPDF, allowing users to easily navigate and extract information using an AI-based assistant. 2️⃣ VidIQVidIQ provides AI-powered tools to optimize YouTube content for better engagement and visibility, making it invaluable for content creators. 3️⃣ SemrushAn advanced SEO platform powered by AI, Semrush gives marketers and researchers deep insights into online visibility, helping boost content performance. AI extends far beyond ChatGPT. This diverse range of tools is designed to make your work more efficient and productive, whether you’re coding, marketing, creating content, or conducting research. Embrace these AI tools to unlock new levels of creativity and efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Provider Hybrid Care Model

Provider Hybrid Care Model

Primary care in the United States urgently needs a redesign, as rural hospital closures and a shortage of providers are severely limiting access for nearly one-third of the population. While advanced technologies like virtual care have helped expand primary care access, there is still a strong preference for in-person visits. To address this, healthcare providers must create a hybrid care model that integrates both virtual and in-person services to better meet patient needs. Hackensack Meridian Health, a New Jersey-based health system, has embraced an AI-based solution to establish this hybrid care model. Through a partnership with K Health, the system aims to create a seamless patient journey that fluidly transitions between virtual and in-person care as needed. According to Dr. Daniel Varga, chief physician executive at Hackensack Meridian Health, the need for this partnership became apparent during the COVID-19 pandemic, which disrupted in-person care across New Jersey. “Before the pandemic, we did zero virtual visits in our offices,” Varga said. “By early 2020, we were doing thousands per day, and we realized there was real demand for it, but we didn’t have the skill set to execute it properly.” With the support of K Health, Varga believes the health system now has the technology and expertise to integrate AI-driven virtual care into its network of 18 hospitals. However, successful implementation requires overcoming technology integration challenges. The AI-Powered Virtual Care Solution The partnership between Hackensack Meridian Health and K Health has two key components, Varga explained. The first is a 24/7 AI-driven virtual care service, and the second is a professional services agreement between K Health’s doctors and the Hackensack medical group. The AI system used in the virtual care platform is built to learn from clinical data, distinguishing it from traditional symptom-checking tools. According to K Health co-founder Ran Shaul, the AI analyzes data from patients’ EHRs and symptom inputs to provide detailed insights into the patient’s health history, giving primary care providers a comprehensive view of the patient‘s current health concerns. “We know about your chronic conditions, your recent visits, and whether you’ve followed up on key health checks like mammograms,” Shaul explained. “It creates a targeted medical chart rather than a generic symptom analysis.” In addition, K Health’s virtual physicians and Hackensack Meridian’s medical group are integrated, sharing the same tax ID and EHR system, which ensures continuity of care between virtual and in-person visits. Varga highlighted that this integration allows for seamless transitions between care settings, where virtual doctors’ notes are readily available to in-person providers the following day. “If a patient sees a virtual doctor at 2 a.m., I have the 24/7 notes right in front of me the next morning in the office,” Varga said. The service is accessible to all patients, including new patients and those recently discharged from Hackensack Meridian Health’s inpatient services who require follow-up care. Overcoming Challenges in Implementation Deploying an AI-driven virtual care system across 18 hospitals presents significant challenges, but Hackensack Meridian Health has developed several strategies to ensure smooth implementation. First, the health system provided training to all 36,000 team members to familiarize them with the platform. Additionally, a dedicated team was created to enhance collaboration between the traditional medical group and the virtual care team. One major focus was connecting hospitals and 24/7 virtual care services to ensure continuity of care for patients leaving emergency departments or being discharged from inpatient care. “Many patients don’t have a primary care doctor when they leave the hospital,” Varga explained. “With this virtual service, we can immediately book a virtual appointment for them before they leave the ED.” Provider Hybrid Care Models provide better patient care, follow-up, and outcomes. The system also offers language accessibility, with patients able to interact with the platform in Spanish and request Spanish-speaking clinicians. This feature is part of the health system’s broader strategy to break down barriers to care access and improve health equity. Improving Access and Health Equity-Provider Hybrid Care Model Shaul noted that the convenience of scheduling virtual appointments at any time helps patients who would otherwise struggle to see a doctor due to work schedules or long travel distances. The virtual care service also addresses the needs of patients with limited English proficiency, allowing them to access care in their native language. By connecting patients who lack a usual source of care with primary care providers through the virtual platform, Hackensack Meridian Health aims to close care gaps. Access to primary care is critical for improving health outcomes, yet the number of Americans with a regular source of care has dropped by 10% in the past 18 years. This decline disproportionately affects Hispanic individuals, those with lower education levels, and the uninsured. Varga emphasized that the virtual care service aligns with Hackensack’s goal of meeting patients where they are—whether virtually, in their hospitals, or at brick-and-mortar medical offices. “The reason we have such a geographically diverse spread of sites is that we believe in meeting patients where they are,” Varga said. “If that means a virtual visit, we’ll meet them there. If it means the No. 1 ranked hospital in New Jersey, we’ll meet them there. And if it’s a medical office, that’s where we’ll meet them.” Salesforce and Tectonic can help your provider solution offer the same diversity. Contact us today! Heath and Life Sciences are winning a competitive edge with Salesforce for better patient outcomes. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to

Read More
AI Agents

AI Agents Interview

In the rapidly evolving world of large language models and generative AI, a new concept is gaining momentum: AI agents. AI Agents Interview explores. AI agents are advanced tools designed to handle complex tasks that traditionally required human intervention. While they may be confused with robotic process automation (RPA) bots, AI agents are much more sophisticated, leveraging generative AI technology to execute tasks autonomously. Companies like Google are positioning AI agents as virtual assistants that can drive productivity across industries. In this Q&A, Jason Gelman, Director of Product Management for Vertex AI at Google Cloud, shares insights into Google’s vision for AI agents and some of the challenges that come with this emerging technology. AI Agents Interview How does Google define AI agents? Jason Gelman: An AI agent is something that acts on your behalf. There are two key components. First, you empower the agent to act on your behalf by providing instructions and granting necessary permissions—like authentication to access systems. Second, the agent must be capable of completing tasks. This is where large language models (LLMs) come in, as they can plan out the steps to accomplish a task. What used to require human planning is now handled by the AI, including gathering information and executing various steps. What are current use cases where AI agents can thrive? Gelman: AI agents can be useful across a wide range of industries. Call centers are a common example where customers already expect AI support, and we’re seeing demand there. In healthcare, organizations like Mayo Clinic are using AI agents to sift through vast amounts of information, helping professionals navigate data more efficiently. Different industries are exploring this technology in unique ways, and it’s gaining traction across many sectors. What are some misconceptions about AI agents? Gelman: One major misconception is that the technology is more advanced than it actually is. We’re still in the early stages, building critical infrastructure like authentication and function-calling capabilities. Right now, AI agents are more like interns—they can assist, but they’re not yet fully autonomous decision-makers. While LLMs appear powerful, we’re still some time away from having AI agents that can handle everything independently. Developing the technology and building trust with users are key challenges. I often compare this to driverless cars. While they might be safer than human drivers, we still roll them out cautiously. With AI agents, the risks aren’t physical, but we still need transparency, monitoring, and debugging capabilities to ensure they operate effectively. How can enterprises balance trust in AI agents while acknowledging the technology is still evolving? Gelman: Start simple and set clear guardrails. Build an AI agent that does one task reliably, then expand from there. Once you’ve proven the technology’s capability, you can layer in additional tasks, eventually creating a network of agents that handle multiple responsibilities. Right now, most organizations are still in the proof-of-concept phase. Some companies are using AI agents for more complex tasks, but for critical areas like financial services or healthcare, humans remain in the loop to oversee decision-making. It will take time before we can fully hand over tasks to AI agents. AI Agents Interview What is the difference between Google’s AI agent and Microsoft Copilot? Gelman: Microsoft Copilot is a product designed for business users to assist with personal tasks. Google’s approach with AI agents, particularly through Vertex AI, is more focused on API-driven, developer-based solutions that can be integrated into applications. In essence, while Copilot serves as a visible assistant for users, Vertex AI operates behind the scenes, embedded within applications, offering greater flexibility and control for enterprise customers. The real potential of AI agents lies in their ability to execute a wide range of tasks at the API level, without the limitations of a low-code/no-code interface. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Maps Winter 25

Salesforce Maps Winter 25

The Salesforce Maps Winter 25 release will be available in production environments between October 29 – 31. Auto-Enablement of the new Maps experience in October To enhance your experience in Salesforce Maps on desktop, the new features currently available in all environments will be auto-enabled in the Winter ’25 release. The Enhanced User Experience setting in the admin configuration settings will remain and can be manually disabled until the Spring ‘25 release. Get Release Ready-Salesforce Maps Winter 25 To ensure a smooth transition, please take the following actions prior to the production release. What This Change Brings Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com