PHI Archives - gettectonic.com - Page 2
AI Agents and Digital Transformation

Inventing the Future of Agents

“The best way to predict the future is to invent it.” – Alan Kay, Computer Science PioneerOr, to channel Buzz Lightyear: “To infinity and beyond.” Inventing the Future of Agents The history of computing has always advanced in fits and starts, a pattern biologists call punctuated equilibrium. Revolutionary technologies emerge slowly—nurtured in research labs, garages, and the minds of visionaries—until the moment comes when a breakthrough shifts the axis of possibility. From there, a new paradigm takes shape, unleashing waves of innovation. Think of the Apple Macintosh, the iPhone, and Salesforce’s own Platform, which pioneered enterprise software-as-a-service (SaaS) and sparked an entirely new industry. Each of these milestones reshaped the way we live and work, setting the stage for even greater advances to come. Alan Kay: A Visionary for Computing’s Future One such paradigm-shifter was Alan Kay. In 1971, while working at Xerox PARC, Kay was immersed in an era when computers were room-sized behemoths. At the time, only four of these machines were connected to the fledgling ARPAnet, a precursor to today’s internet. Kay, a skilled musician with a deep appreciation for human-centered design, brought an empathetic and humanistic approach to innovation. In 1972, he introduced the Dynabook—a radical vision for personal computing that was decades ahead of its time. The Dynabook concept featured a battery-powered laptop with a touchscreen, wireless access to global information, and an interface so simple even children could use it. Kay and his team at PARC went on to develop many of the foundational elements of modern personal computing: overlapping windows, graphical user interfaces, and object-oriented programming. Later, while at Apple, Kay helped shape the vision for the groundbreaking 1987 Apple Knowledge Navigator video, which anticipated today’s iPad and iPhone. Agents and Humans: Driving Success Together Fast-forward to today, and we are on the cusp of another technological leap forward: AI agents. Much like Kay’s vision of personal computing, the emergence of intelligent, autonomous agents signals a new chapter in how humans and technology work together. Agentforce: Bringing the Future to the Present This interplay between visionary ideas and emerging technologies was on full display with the launch of Agentforce at Dreamforce 2024. A year earlier, at Dreamforce 2023, Salesforce Futures debuted its Salesforce 2030 film, drawing inspiration from Apple’s Knowledge Navigator. The film offered a glimpse into a world where humans collaborate seamlessly with autonomous AI agents—an aspirational vision of business transformed. Since then, the imagination gap between fiction and reality has narrowed. Salesforce’s work in Agentforce and publications like Personal AI Agents and Agents at Work have explored how agents are already changing business as we know it. These tools are bringing science fiction to life, enabling businesses to achieve unprecedented levels of efficiency, creativity, and success. A New Paradigm in Progress Like the Macintosh, the iPhone, or the Salesforce Platform, the rise of AI agents represents another transformative moment in computing history. By combining vision with technological breakthroughs, we are witnessing the dawn of a new era—one where humans and AI agents work together to push the boundaries of what’s possible. Alan Kay’s timeless wisdom rings true: the future isn’t something we wait for—it’s something we invent. With Agentforce, that future is already here. Inventing the Future of Agents. Are you ready to start Inventing the Future of Agents? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
salesforce end to end

From CRM to End-to-End Platform

Transform Your Perspective: From CRM to End-to-End Platform Unleash the power of Salesforce to supercharge your Sales and Service teams. “To sell, you must be your own customer. If it works for you, it’ll work for others as well.” This philosophy drives us to share how you can elevate your Salesforce implementation to unlock its full potential. Our expertise, honed through diverse projects and use cases, has equipped us with strategies to tackle today’s challenges effectively. If you’ve ever felt like your Salesforce platform has untapped potential, you’re not alone. Many organizations encounter roadblocks that limit adoption and the full utilization of cloud solutions. But it’s time to change that. Here are three strategies to help you transform your Sales Cloud and Service Cloud, maximizing their value and creating a competitive edge. 1. Maximize Your Salesforce License: Do More with What You Have Have you explored all that Salesforce has to offer? Start by examining the manual or repetitive processes in your organization—things like spreadsheets or outdated workflows that operate outside your core platform. Salesforce provides tools to digitize and optimize these tasks: By digitizing these workflows, you’ll free up your teams to focus on strategic initiatives while also reducing errors and increasing efficiency. 2. Foster a Learning Culture: The Key to Driving Innovation The success of any digital transformation goes beyond technology—it starts with people. Without proper training and an emphasis on learning, even the most advanced platform can fail to deliver. Salesforce’s Trailhead is an excellent resource to cultivate a culture of learning. We recommend these two modules for leaders and teams: Additionally, partnering with experts like Tectonic ensures tailored training and adoption strategies, helping your teams unlock the platform’s full potential. 3. Leverage Data: Unlock Your Organization’s Hidden Gold Your company’s data is one of its most valuable assets, and if you’ve been using Salesforce for years, you may already have a treasure trove of insights waiting to be leveraged. Enter Agentforce, the evolution of Salesforce’s ‘Copilot.’ Powered by AI, Agentforce automates repetitive tasks, enabling your sales and service teams to focus on high-value activities like closing deals and delivering exceptional service. At Tectonic, we specialize in implementing Agentforce seamlessly and at scale. Our expertise ensures that your data is optimized, empowering your business with actionable insights and AI-driven capabilities. The Tectonic Advantage: Expertise Meets Innovation At Tectonic, we blend deep technical expertise in Salesforce with insights gained from countless successful projects. Through our cross-cloud methodology, we bring together ideas from across industries to solve traditional Salesforce implementation challenges and drive innovation. It’s Time to Act… Transform your Salesforce experience from a basic CRM to an end-to-end platform that drives growth and efficiency. Let’s work together to unlock your platform’s hidden potential and empower your teams to achieve more. Ready to redefine your Salesforce journey? Connect with Tectonic today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Is Your LLM Agent Enterprise-Ready?

Is Your LLM Agent Enterprise-Ready?

Customer Relationship Management (CRM) systems are the backbone of modern business operations, orchestrating customer interactions, data management, and process automation. As businesses embrace advanced AI, the potential for transformative growth is clear—automating workflows, personalizing customer experiences, and enhancing operational efficiency. However, deploying large language model (LLM) agents in CRM systems demands rigorous, real-world evaluations to ensure they meet the complexity and dynamic needs of professional environments.

Read More
gen z and retail travel

Gen Z and Retail Travel Insights

Is Travel Retail Ready for Gen Z? New Research Highlights Gaps in Alignment The latest research from Swiss-based travel retail agency m1nd-set sheds light on the shopping and travel behaviors of Gen Z—a group poised to become the largest segment of traveling shoppers within the next few years. The findings reveal a pressing need for the travel retail industry to better align its offerings with the unique expectations and values of this influential generation. Gen Z: A Generation with Distinct Values and Habits Peter Mohn, CEO and Owner of m1nd-set, emphasized the importance of prioritizing Gen Z consumers, noting their markedly different behaviors compared to other generations. “Like the focus placed on Millennials and Chinese consumers in recent years, it’s critical to give equal or greater attention to Gen Z. This generation exhibits distinct traits, particularly in their consumer habits, lifestyle preferences, and media consumption,” Mohn said. Key insights from m1nd-set’s research include: How Gen Z is Reshaping Travel and Retail The research highlights how Gen Z is redefining the travel industry by prioritizing experiences that are authentic, eco-conscious, and culturally meaningful over traditional luxury goods and activities. “Gen Zs are reshaping tourism,” Mohn explained, “by focusing on flexible, short-haul travel and unique experiences. They spend a significant portion of their budgets on international travel, favoring local and sustainable options over dining or shopping at home. Cultural experiences resonate far more than nightlife or traditional tourism.” Key data points from m1nd-set’s study include: Challenges in Engaging Gen Z in Travel Retail Despite their growing presence, the research highlights key challenges in converting Gen Z travelers into loyal shoppers in duty-free and travel retail spaces: Opportunities for Travel Retail: Winning Over Gen Z Mohn emphasized the vital role of shop floor sales staff in boosting Gen Z conversion rates, noting that interactions with staff positively influence purchase decisions for over 70% of Gen Z shoppers who engage with them. To capture the attention of this discerning generation, m1nd-set recommends that travel retail businesses: A Generation of Growing Influence By 2030, Gen Z and their successors, Gen Alpha, are expected to spend three times as much as all other generations combined. Currently, Gen Z already wields a staggering $200 billion in spending power, solidifying their position as a key demographic for travel retail. However, to fully tap into this potential, the industry must evolve quickly to meet the demands of this purpose-driven, tech-savvy, and sustainability-focused generation. As Mohn concluded, “Travel retail must become more than just a place to shop—it should be an engaging, socially conscious destination that resonates deeply with Gen Z values.” Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI Energy Solution

AI Energy Solution

Could the AI Energy Solution Make AI Unstoppable? The Rise of Brain-Based AI In 2002, Jason Padgett, a furniture salesman from Tacoma, Washington, experienced a life-altering transformation after a traumatic brain injury. Following a violent assault, Padgett began to perceive the world through intricate patterns of geometry and fractals, developing a profound, intuitive grasp of advanced mathematical concepts—despite no formal education in the subject. His extraordinary abilities, emerging from the brain’s adaptation to injury, revealed an essential truth: the human brain’s remarkable capacity for resilience and reorganization. This phenomenon underscores the brain’s reliance on inhibition, a critical mechanism that silences or separates neural processes to conserve energy, clarify signals, and enable complex cognition. Researcher Iain McGilchrist highlights that this ability to step back from immediate stimuli fosters reflection and thoughtful action. Yet this foundational trait—key to the brain’s efficiency and adaptability—is absent from today’s dominant AI models. Current AI systems, like Transformers powering tools such as ChatGPT, lack inhibition. These models rely on probabilistic predictions derived from massive datasets, resulting in inefficiencies and an inability to learn independently. However, the rise of brain-based AI seeks to emulate aspects of inhibition, creating systems that are not only more energy-efficient but also capable of learning from real-world, primary data without constant retraining. The AI Energy Problem Today’s AI landscape is dominated by Transformer models, known for their ability to process vast amounts of secondary data, such as scraped text, images, and videos. While these models have propelled significant advancements, their insatiable demand for computational power has exposed critical flaws. As energy costs rise and infrastructure investment balloons, the industry is beginning to reevaluate its reliance on Transformer models. This shift has sparked interest in brain-inspired AI, which promises sustainable solutions through decentralized, self-learning systems that mimic human cognitive efficiency. What Brain-Based AI Solves Brain-inspired models aim to address three fundamental challenges with current AI systems: The human brain’s ability to build cohesive perceptions from fragmented inputs—like stitching together a clear visual image from saccades and peripheral signals—serves as a blueprint for these models, demonstrating how advanced functionality can emerge from minimal energy expenditure. The Secret to Brain Efficiency: A Thousand Brains Jeff Hawkins, the creator of the Palm Pilot, has dedicated decades to understanding the brain’s neocortex and its potential for AI design. His Thousand Brains Theory of Intelligence posits that the neocortex operates through a universal algorithm, with approximately 150,000 cortical columns functioning as independent processors. These columns identify patterns, sequences, and spatial representations, collaborating to form a cohesive perception of the world. Hawkins’ brain-inspired approach challenges traditional AI paradigms by emphasizing predictive coding and distributed processing, reducing energy demands while enabling real-time learning. Unlike Transformers, which centralize control, brain-based AI uses localized decision-making, creating a more scalable and adaptive system. Is AI in a Bubble? Despite immense investment in AI, the market’s focus remains heavily skewed toward infrastructure rather than applications. NVIDIA’s data centers alone generate 5 billion in annualized revenue, while major AI applications collectively bring in just billion. This imbalance has led to concerns about an AI bubble, reminiscent of the early 2000s dot-com and telecom busts, where overinvestment in infrastructure outpaced actual demand. The sustainability of current AI investments hinges on the viability of new models like brain-based AI. If these systems gain widespread adoption within the next decade, today’s energy-intensive Transformer models may become obsolete, signaling a profound market correction. Controlling Brain-Based AI: A Philosophical Divide The rise of brain-based AI introduces not only technical challenges but also philosophical ones. Scholars like Joscha Bach argue for a reductionist approach, constructing intelligence through mathematical models that approximate complex phenomena. Others advocate for holistic designs, warning that purely rational systems may lack the broader perspective needed to navigate ethical and unpredictable scenarios. This philosophical debate mirrors the physical divide in the human brain: one hemisphere excels in reductionist analysis, while the other integrates holistic perspectives. As AI systems grow increasingly complex, the philosophical framework guiding their development will profoundly shape their behavior—and their impact on society. The future of AI lies in balancing efficiency, adaptability, and ethical design. Whether brain-based models succeed in replacing Transformers will depend not only on their technical advantages but also on our ability to guide their evolution responsibly. As AI inches closer to mimicking human intelligence, the stakes have never been higher. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI Inference vs. Training

AI Inference vs. Training

AI Inference vs. Training: Key Differences and Tradeoffs AI training and inference are the foundational phases of machine learning, each with distinct objectives and resource demands. Optimizing the balance between the two is crucial for managing costs, scaling models, and ensuring peak performance. Here’s a closer look at their roles, differences, and the tradeoffs involved. Understanding Training and Inference Key Differences Between Training and Inference 1. Compute Costs 2. Resource and Latency Considerations Strategic Tradeoffs Between Training and Inference Key Considerations for Balancing Training and Inference As AI technology evolves, hardware advancements may narrow the gap in resource requirements between training and inference. Nonetheless, the key to effective machine learning systems lies in strategically balancing the demands of both processes to meet specific goals and constraints. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Generative AI Energy Consumption Rises

AI for the Ho-Ho-Holidays

The Holiday Rush and AI’s Growing Role in Retail The holiday season is approaching quickly, with fewer days between Thanksgiving and Christmas this year than at any time since 2019. This condensed timeline makes Salesforce’s latest State of the Connected Customer report—this year titled State of the AI Connected Customer—particularly timely. The report, based on insights from over 15,000 consumers worldwide, focuses on the growing role of artificial intelligence (AI), specifically AI agents, in transforming customer experiences. With Salesforce’s recent launch of Agentforce, AI agents have taken center stage. According to Michael Affronti, SVP and General Manager of Commerce Cloud at Salesforce, the retail sector is already exploring this technology: “Retailers that we talk to are starting to implement AI agents. Unlike chatbots, AI agents can analyze customer data to make proactive recommendations and even take action. For consumers, AI agents create smoother checkout experiences, streamline returns, and deliver personalized shopping that feels like working with an incredible in-store associate. For retailers, AI agents drive higher margins and customer retention by delivering exceptional service. As we like to say, ‘There’s an agent for that.’” Rebuilding Trust with AI One of the most compelling use cases for AI agents, according to Affronti, lies in addressing declining consumer trust. Salesforce’s research highlights alarming trends: AI agents present an opportunity to rebuild trust by delivering reliable and transparent experiences. While consumer expectations for personalized service remain high, Salesforce data suggests that 30% of consumers would work with AI agents if it meant faster service. However, skepticism persists—curiosity is the top emotion associated with AI, followed closely by suspicion and anxiety. Transparency is crucial, as 40% of consumers are more likely to trust AI agents when their logic is explained, and there’s an option to escalate to a human. “Most people just want to know it’s AI, and then they’ll be comfortable,” Affronti notes. “Clarity about what the agent is doing, combined with the ability to talk to a real person, builds trust.” Three Opportunities for Retailers Affronti outlines three key strategies for retailers to embrace AI agents effectively this holiday season: Experimentation and Preparing for the Future For retailers not yet leveraging AI, Affronti advises starting small but experimenting now. For example, large brands like Saks are already piloting AI agents such as “Sophie,” which handles tasks like order management and learns new capabilities based on customer feedback. However, smaller businesses can also benefit from AI tools, such as generative AI for writing product descriptions or automating promotions, regardless of scale. “One of the great things about AI today is how democratized it has become,” Affronti explains. “Small businesses using Salesforce’s Commerce Cloud can leverage AI for tasks like creating product descriptions or automating translations, even if their catalog is limited.” Looking Ahead While this holiday season may not see a widespread rollout of AI-driven retail solutions, early adopters are already showcasing what’s possible. Retailers that embrace experimentation and lay the groundwork for AI-powered experiences today will likely see significant results by the 2025 holiday season. The key takeaway: now is the time to build the foundation for the future of AI in retail. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Where LLMs Fall Short

LLM Economies

Throughout history, disruptive technologies have been the catalyst for major social and economic revolutions. The invention of the plow and irrigation systems 12,000 years ago sparked the Agricultural Revolution, while Johannes Gutenberg’s 15th-century printing press fueled the Protestant Reformation and helped propel Europe out of the Middle Ages into the Renaissance. In the 18th century, James Watt’s steam engine ushered in the Industrial Revolution. More recently, the internet has revolutionized communication, commerce, and information access, shrinking the world into a global village. Similarly, smartphones have transformed how people interact with their surroundings. Now, we stand at the dawn of the AI revolution. Large Language Models (LLMs) represent a monumental leap forward, with significant economic implications at both macro and micro levels. These models are reshaping global markets, driving new forms of currency, and creating a novel economic landscape. The reason LLMs are transforming industries and redefining economies is simple: they automate both routine and complex tasks that traditionally require human intelligence. They enhance decision-making processes, boost productivity, and facilitate cost reductions across various sectors. This enables organizations to allocate human resources toward more creative and strategic endeavors, resulting in the development of new products and services. From healthcare to finance to customer service, LLMs are creating new markets and driving AI-driven services like content generation and conversational assistants into the mainstream. To truly grasp the engine driving this new global economy, it’s essential to understand the inner workings of this disruptive technology. These posts will provide both a macro-level overview of the economic forces at play and a deep dive into the technical mechanics of LLMs, equipping you with a comprehensive understanding of the revolution happening now. Why Now? The Connection Between Language and Human Intelligence AI did not begin with ChatGPT’s arrival in November 2022. Many people were developing machine learning classification models in 1999, and the roots of AI go back even further. Artificial Intelligence was formally born in 1950, when Alan Turing—considered the father of theoretical computer science and famed for cracking the Nazi Enigma code during World War II—created the first formal definition of intelligence. This definition, known as the Turing Test, demonstrated the potential for machines to exhibit human-like intelligence through natural language conversations. The test involves a human evaluator who engages in conversations with both a human and a machine. If the evaluator cannot reliably distinguish between the two, the machine is considered to have passed the test. Remarkably, after 72 years of gradual AI development, ChatGPT simulated this very interaction, passing the Turing Test and igniting the current AI explosion. But why is language so closely tied to human intelligence, rather than, for example, vision? While 70% of our brain’s neurons are devoted to vision, OpenAI’s pioneering image generation model, DALL-E, did not trigger the same level of excitement as ChatGPT. The answer lies in the profound role language has played in human evolution. The Evolution of Language The development of language was the turning point in humanity’s rise to dominance on Earth. As Yuval Noah Harari points out in his book Sapiens: A Brief History of Humankind, it was the ability to gossip and discuss abstract concepts that set humans apart from other species. Complex communication, such as gossip, requires a shared, sophisticated language. Human language evolved from primitive cave signs to structured alphabets, which, along with grammar rules, created languages capable of expressing thousands of words. In today’s digital age, language has further evolved with the inclusion of emojis, and now with the advent of GenAI, tokens have become the latest cornerstone in this progression. These shifts highlight the extraordinary journey of human language, from simple symbols to intricate digital representations. In the next post, we will explore the intricacies of LLMs, focusing specifically on tokens. But before that, let’s delve into the economic forces shaping the LLM-driven world. The Forces Shaping the LLM Economy AI Giants in Competition Karl Marx and Friedrich Engels argued that those who control the means of production hold power. The tech giants of today understand that AI is the future means of production, and the race to dominate the LLM market is well underway. This competition is fierce, with industry leaders like OpenAI, Google, Microsoft, and Facebook battling for supremacy. New challengers such as Mistral (France), AI21 (Israel), and Elon Musk’s xAI and Anthropic are also entering the fray. The LLM industry is expanding exponentially, with billions of dollars of investment pouring in. For example, Anthropic has raised $4.5 billion from 43 investors, including major players like Amazon, Google, and Microsoft. The Scarcity of GPUs Just as Bitcoin mining requires vast computational resources, training LLMs demands immense computing power, driving a search for new energy sources. Microsoft’s recent investment in nuclear energy underscores this urgency. At the heart of LLM technology are Graphics Processing Units (GPUs), essential for powering deep neural networks. These GPUs have become scarce and expensive, adding to the competitive tension. Tokens: The New Currency of the LLM Economy Tokens are the currency driving the emerging AI economy. Just as money facilitates transactions in traditional markets, tokens are the foundation of LLM economics. But what exactly are tokens? Tokens are the basic units of text that LLMs process. They can be single characters, parts of words, or entire words. For example, the word “Oscar” might be split into two tokens, “os” and “car.” The performance of LLMs—quality, speed, and cost—hinges on how efficiently they generate these tokens. LLM providers price their services based on token usage, with different rates for input (prompt) and output (completion) tokens. As companies rely more on LLMs, especially for complex tasks like agentic applications, token usage will significantly impact operational costs. With fierce competition and the rise of open-source models like Llama-3.1, the cost of tokens is rapidly decreasing. For instance, OpenAI reduced its GPT-4 pricing by about 80% over the past year and a half. This trend enables companies to expand their portfolio of AI-powered products, further fueling the LLM economy. Context Windows: Expanding Capabilities

Read More
Salesforce AI Research Introduces LaTRO

Salesforce AI Research Introduces LaTRO

Salesforce AI Research Introduces LaTRO: A Breakthrough in Enhancing Reasoning for Large Language Models Large Language Models (LLMs) have revolutionized tasks such as answering questions, generating content, and assisting with workflows. However, they often struggle with advanced reasoning tasks like solving complex math problems, logical deduction, and structured data analysis. Salesforce AI Research has addressed this challenge by introducing LaTent Reasoning Optimization (LaTRO), a groundbreaking framework that enables LLMs to self-improve their reasoning capabilities during training. The Need for Advanced Reasoning in LLMs Reasoning—especially sequential, multi-step reasoning—is essential for tasks that require logical progression and problem-solving. While current models excel at simpler queries, they often fall short in tackling more complex tasks due to a reliance on external feedback mechanisms or runtime optimizations. Enhancing reasoning abilities is therefore critical to unlocking the full potential of LLMs across diverse applications, from advanced mathematics to real-time data analysis. Existing techniques like Chain-of-Thought (CoT) prompting guide models to break problems into smaller steps, while methods such as Tree-of-Thought and Program-of-Thought explore multiple reasoning pathways. Although these techniques improve runtime performance, they don’t fundamentally enhance reasoning during the model’s training phase, limiting the scope of improvement. Salesforce AI Research Introduces LaTRO: A Self-Rewarding Framework LaTRO shifts the paradigm by transforming reasoning into a training-level optimization problem. It introduces a self-rewarding mechanism that allows models to evaluate and refine their reasoning pathways without relying on external feedback or supervised fine-tuning. This intrinsic approach fosters continual improvement and empowers models to solve complex tasks more effectively. How LaTRO Works LaTRO’s methodology centers on sampling reasoning paths from a latent distribution and optimizing these paths using variational techniques. Here’s how it works: This self-rewarding cycle ensures that the model continuously refines its reasoning capabilities during training. Unlike traditional methods, LaTRO’s framework operates autonomously, without the need for external reward models or costly supervised feedback loops. Key Benefits of LaTRO Performance Highlights LaTRO’s effectiveness has been validated across various datasets and models: Applications and Implications LaTRO’s ability to foster logical coherence and structured reasoning has far-reaching applications in fields requiring robust problem-solving: By enabling LLMs to autonomously refine their reasoning processes, LaTRO brings AI closer to achieving human-like cognitive abilities. The Future of AI with LaTRO LaTRO sets a new benchmark in AI research by demonstrating that reasoning can be optimized during training, not just at runtime. This advancement by Salesforce AI Research highlights the potential for self-evolving AI models that can independently improve their problem-solving capabilities. Salesforce AI Research Introduces LaTRO As the field of AI progresses, frameworks like LaTRO pave the way for more autonomous, intelligent systems capable of navigating complex reasoning tasks across industries. LaTRO represents a significant leap forward, moving AI closer to achieving true autonomous reasoning. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Digital Transformation for Life Sciences

Salesforce Winter 25 Release for Life Sciences

The Salesforce Winter ’25 release introduces groundbreaking updates tailored to the life sciences industry. Whether you’re in pharmaceuticals, biotech, or medical devices, these innovations aim to streamline operations, enhance patient care, and strengthen stakeholder relationships. Let’s explore the key enhancements: Quote and Agreement Automation Salesforce’s advancements in Quote and Agreement Automation simplify pricing and contractual negotiations for life sciences organizations. Key benefits include: These updates not only improve operational efficiency but also reduce errors and compliance risks, helping organizations stay ahead in a highly regulated industry. Financial Assistance Programs Navigating financial support for patients can be challenging, but Salesforce is making it easier. The Winter ’25 release enhances tools for managing financial assistance programs, ensuring eligible patients get the support they need. Key features include: By easing the financial burden on patients, these updates strengthen trust and foster better patient-provider relationships. Participant Recruitment and Enrollment Recruiting and enrolling participants for clinical trials is now more efficient with Salesforce’s new AI-driven tools. Notable improvements include: These updates not only shorten recruitment timelines but also enhance the overall trial experience for participants. Patient Program Outcome Management Tracking patient outcomes is vital for life sciences companies, and Salesforce’s Patient Program Outcome Management tools deliver powerful capabilities. Features include: These tools empower organizations to make data-driven decisions, improving program effectiveness and elevating patient care. Pharmacy Benefits Verification Verifying patient benefits is often a time-consuming task. The Winter ’25 release introduces automation to streamline this process. Key highlights: By simplifying benefits verification, this update enhances efficiency for providers and ensures a smoother experience for patients. Why It Matters for Life Sciences The Winter ’25 release is a leap forward for the life sciences industry, offering tools that: From automating quotes and agreements to improving patient support and trial management, these updates empower organizations to focus on delivering exceptional care and innovation. Ready to Transform Your Salesforce Experience?Tectonic is here to help you unlock the full potential of these enhancements. Whether you’re looking to optimize patient care, streamline operations, or improve outcomes, we’ll guide you every step of the way. Contact Tectonic today to get started! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

AI’s Impact on Future Information Ecosystems

AI’s Impact on Future Information Ecosystems The proliferation of generative AI technology has ignited a renewed focus within the media industry on how to strategically adapt to its capabilities. Media professionals are now confronted with crucial questions: What are the most effective ways to leverage this technology for efficiency in news production and to enhance audience experiences? Conversely, what threats do these technological advancements pose? Is legacy media on the brink of yet another wave of disintermediation from its audiences? Additionally, how does the evolution of technology impact journalism ethics? AI’s Impact on Future Information Ecosystems. In response to these challenges, the Open Society Foundations (OSF) launched the AI in Journalism Futures project earlier this year. The first phase of this ambitious initiative involved an open call for participants to develop future-oriented scenarios that explore the potential driving forces and implications of AI within the broader media ecosystem. The project sought to answer questions about what might transpire among various stakeholders in 5, 10, or 15 years. As highlighted by Nick Diakopoulos, scenarios are a valuable method for capturing a diverse range of perspectives on complex issues. While predicting the future is not the goal, understanding a variety of plausible alternatives can significantly inform current strategic thinking. Ultimately, more than 800 individuals from approximately 70 countries contributed short scenarios for analysis. The AI in Journalism Futures project subsequently utilized these scenarios as a foundation for a workshop, which refined the ideas outlined in their report. Diakopoulos emphasizes the importance of examining this broad set of initial scenarios, which OSF graciously provided in anonymized form. This analysis specifically explores (1) the various types of impacts identified within the scenarios, (2) the associated timeframes for these impacts—whether they are short, medium, or long-term, and (3) the global differences in focus across regions, highlighting how different parts of the world emphasized distinct types of impacts. While many additional questions could be explored regarding this data—such as the drivers of impacts, final outcomes, severity, stakeholders involved, or technical capabilities emphasized—this analysis focuses primarily on impacts. Refining the Data The initial pool of 872 scenarios underwent a rigorous process of cleaning, filtering, transformation, and verification before analysis. Firstly, scenarios shorter than 50 words were excluded from consideration, resulting in 852 scenarios for analysis. Additionally, 14 scenarios that were not written in English were translated using Google Sheets. To enable geographic and temporal analysis, the country of origin for each scenario writer was mapped to their respective continents, and the free-text “timeframe” field was converted into numerical representations of years. Next, impacts were extracted from each scenario using an LLM (GPT-4 in this case). The prompts for the LLM were refined through iteration, with a clear definition established for what constitutes an “impact.” Diakopoulos defined an impact as “a significant effect, consequence, or outcome that an action, event, or other factor has in the scenario.” This definition encompasses not only the ultimate state of a scenario but also intermediate outcomes. The LLM was instructed to extract distinct impacts, with each impact represented by a one-sentence description and a short label. For instance, one impact could be described as, “The proliferation of flawed AI systems leads to a compromised information ecosystem, causing a general doubt in the reliability of all information,” labeled as “Compromised Information Ecosystem.” To ensure the accuracy of this extraction process, a random sample of five scenarios was manually reviewed to validate the extracted impacts against the established definition. All extracted impacts passed the checks, leading to confidence in scaling the analysis across the entire dataset. This process resulted in the identification of 3,445 impacts from the 852 scenarios. AI’s Impact on Future Information Ecosystems A typology of impact types was developed based on the 3,445 impact descriptions, utilizing a novel method for qualitative thematic analysis from a Stanford University study. This approach clusters input texts, synthesizes concepts that reflect abstract connections, and produces scoring definitions to assess the relevance of each original text. For example, a concept like “AI Personalization” might be defined by the question, “Does the text discuss how AI personalizes content or enhances user engagement?” Each impact description was then scored against these concepts to tabulate occurrence frequencies. Impacts of AI on Media Ecosystems Through this analytical approach, 19 impact themes emerged, along with their corresponding scoring definitions: Interestingly, many scenarios articulated themes around how AI intersects with fact-checking, trust, misinformation, ethics, labor concerns, and evolving business models. Although some concepts may not be entirely distinct, this categorization offers a meaningful overview of the key ideas represented in the data. Distribution of Impact Themes Comparing these findings with those in the OSF report reveals some discrepancies. For instance, while the report emphasizes personalization and misinformation, these themes were less prevalent in the analyzed scenarios. Moreover, themes such as the rise of AI agents and audience fragmentation were mentioned but did not cluster significantly in the analysis. To capture potentially interesting but less prevalent impacts, the clustering was rerun with a smaller minimum cluster size. This adjustment yielded hundreds more concept themes, revealing insights into longer-tail issues. Positive visions for generative AI included reduced language barriers and increased accessibility for marginalized audiences, while concerns about societal fragmentation and privacy were also raised. Impacts Over Time and Around the World The analysis also explored how the impacts varied based on the timeframe selected by writers and their geographic locations. Using a Chi-Squared test, it was determined that “AI Personalization” trends towards long-term implications, while both “AI Fact-Checking” and “AI and Misinformation” skew toward shorter-term issues. This suggests that scenario writers perceive misinformation impacts as imminent threats, likely reflecting ongoing developments in the media landscape. When examining the distribution of impacts by region, it was found that “AI Fact-Checking” was more frequently noted by writers from Africa and Asia, while “AI and Misinformation” was less prevalent in scenarios from African writers but more so in those from Asian contributors. This indicates a divergence in perspectives on AI’s role in the media ecosystem.

Read More
Commerce Cloud and Agentic AI

Gen X and Millennials Lead in Embracing Agentic AI

Gen X and Millennials Lead in Embracing Agentic AI: Salesforce Report Generation X and millennials are showing greater openness to adopting agentic artificial intelligence (AI), according to Salesforce’s State of the AI Connected Customer report. Agentic AI refers to autonomous agents capable of independently making decisions and performing tasks, learning and adapting from experiences without direct human supervision. This technology is making significant inroads across industries, with applications ranging from personalized recommendations and inventory management in retail to supply chain optimization in logistics. It also finds use in healthcare, finance, telecom, IT, and customer service. Generational Differences in AI Adoption The report highlights that millennials (57%) and Gen Xers (58%) in India are more inclined to embrace AI agents for faster and more proactive customer service compared to Gen Z (51%) and Baby Boomers (42%). These autonomous agents enhance customer experiences by delivering personalized and relevant content, which resonates more with the tech-savvy Gen X and millennial demographics. Who Are These Generations? Building Trust in the AI Era The report reveals a sharp decline in consumer trust, with trust levels at their lowest in eight years. Over half of the respondents feel companies are less trustworthy than a year ago and believe businesses mishandle customer data. Arun Parameswaran, SVP & Managing Director, Sales and Distribution at Salesforce India, emphasized the critical role of trust in AI strategies: “As we enter a new era of intelligent customer engagement, brands that prioritize trust in their AI strategies will be best positioned to deliver impactful, lasting connections.” Transparency, according to the report, is key to restoring consumer confidence in the AI-driven era. Companies that adopt responsible AI practices, particularly in the design and deployment of agentic AI, can foster stronger customer relationships. Global Perspective The findings are based on a survey of 15,015 consumers across India, Australia, Brazil, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Singapore, Spain, Sweden, the UK, and the US. As businesses increasingly integrate agentic AI into their operations, understanding generational attitudes and prioritizing ethical AI practices will be essential for fostering trust and delivering exceptional customer experiences. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
gettectonic.com