Provider - gettectonic.com
AI-Powered Smarter Media

AI Transforming Precision Medicine

How AI-Driven Data Curation is Transforming Precision Medicine Precision medicine—a healthcare approach that personalizes disease prevention and treatment based on insights into a patient’s genes, environment, and behavior—holds incredible promise. However, its success depends on high-quality, curated data from sources like electronic health records (EHRs). This reliance creates significant challenges for healthcare providers and researchers. Can artificial intelligence (AI) help address these hurdles? AI-enabled data curation is already making strides in advancing precision medicine, particularly in oncology. By analyzing vast datasets, including structured and unstructured information, AI is helping healthcare organizations accelerate research and improve patient outcomes. Data Curation Challenges in Precision Medicine Real-world data (RWD) is a key driver of precision medicine, but processing this data is fraught with challenges. According to Dr. C.K. Wang, Chief Medical Officer at COTA, Inc., EHRs provide unprecedented access to detailed patient information, enabling deeper insights into care patterns. However, much of this data resides in unstructured formats, such as clinicians’ notes, making it difficult to extract and analyze. “To transform this unstructured data into actionable insights, significant human expertise and resources are required,” Wang explained. While AI tools like COTA’s CAILIN, which uses advanced search capabilities, streamline this process, human involvement remains essential. Wang emphasized that even with the rapid advancements in AI, healthcare data curation requires expert oversight to ensure quality and reliability. “The adage ‘junk in, junk out’ applies here—without high-quality training data, AI cannot generate meaningful insights,” he noted. PHI and COTA: A Collaborative Approach to AI-Driven Curation To overcome these challenges, Precision Health Informatics (PHI), a subsidiary of Texas Oncology, partnered with COTA to enhance their data curation capabilities. The collaboration aims to integrate structured and unstructured data, including clinician notes and patient-reported outcomes, into a unified resource for precision medicine. PHI’s database, which represents 1.6 million patient journeys, provides a rich resource for hypothesis-driven studies and clinical trial enrichment. However, much of this data was siloed or unstructured, requiring advanced tools and expert intervention. Lori Brisbin, Chief Operating Officer at PHI, highlighted the importance of partnering with a data analytics leader. “COTA’s strong clinical knowledge in oncology allowed them to identify data gaps and recommend improvements,” she said. This partnership is yielding significant results, including a high data attrition rate of 87%—far surpassing the industry average of 50% for similar projects. The Role of AI in Cancer Care AI tools like CAILIN are helping PHI and COTA refine data curation processes by: Brisbin likened the role of AI to sorting images: “If you’re looking for German shepherds, AI will narrow the search but might include similar images, like wolves or huskies. Experts are still needed to validate and refine the results.” Building the Foundation for Better Outcomes The integration of high-quality RWD into analytics efforts is reshaping precision medicine. While clinical trial data offers valuable insights, it often lacks the variability seen in real-world scenarios. Adding RWD to these datasets helps expand the scope of research and ensure broader applicability. For instance, cancer care guidelines developed with RWD can account for diverse patient populations and treatment approaches. COTA’s work with PHI underscores the value of collaborative data curation, with AI streamlining processes and human experts ensuring accuracy. The Future of AI in Precision Medicine As healthcare organizations invest in data-driven innovation, AI will play an increasingly pivotal role in enabling precision medicine. However, challenges remain. Wang noted that gaps in EHR data, such as missing survival metrics, can undermine oncological outcomes research. Advances in interoperability and external data sources will be key to addressing these issues. “The foundation of our partnership is built on leveraging data insights to enhance care quality and improve operational efficiency,” Wang said. Through AI-powered tools and meaningful partnerships, precision medicine is poised to deliver transformative results, empowering providers to offer tailored treatments that improve patient outcomes at scale. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
Standards in Healthcare Cybersecurity

Deploying Large Language Models in Healthcare

Study Identifies Cost-Effective Strategies for Deploying Large Language Models in Healthcare Efficient deployment of large language models (LLMs) at scale in healthcare can streamline clinical workflows and reduce costs by up to 17 times without compromising reliability, according to a study published in NPJ Digital Medicine by researchers at the Icahn School of Medicine at Mount Sinai. The research highlights the potential of LLMs to enhance clinical operations while addressing the financial and computational hurdles healthcare organizations face in scaling these technologies. To investigate solutions, the team evaluated 10 LLMs of varying sizes and capacities using real-world patient data. The models were tested on chained queries and increasingly complex clinical notes, with outputs assessed for accuracy, formatting quality, and adherence to clinical instructions. “Our study was driven by the need to identify practical ways to cut costs while maintaining performance, enabling health systems to confidently adopt LLMs at scale,” said Dr. Eyal Klang, director of the Generative AI Research Program at Icahn Mount Sinai. “We aimed to stress-test these models, evaluating their ability to manage multiple tasks simultaneously and identifying strategies to balance performance and affordability.” The team conducted over 300,000 experiments, finding that high-capacity models like Meta’s Llama-3-70B and GPT-4 Turbo 128k performed best, maintaining high accuracy and low failure rates. However, performance began to degrade as task volume and complexity increased, particularly beyond 50 tasks involving large prompts. The study further revealed that grouping tasks—such as identifying patients for preventive screenings, analyzing medication safety, and matching patients for clinical trials—enabled LLMs to handle up to 50 simultaneous tasks without significant accuracy loss. This strategy also led to dramatic cost savings, with API costs reduced by up to 17-fold, offering a pathway for health systems to save millions annually. “Understanding where these models reach their cognitive limits is critical for ensuring reliability and operational stability,” said Dr. Girish N. Nadkarni, co-senior author and director of The Charles Bronfman Institute of Personalized Medicine. “Our findings pave the way for the integration of generative AI in hospitals while accounting for real-world constraints.” Beyond cost efficiency, the study underscores the potential of LLMs to automate key tasks, conserve resources, and free up healthcare providers to focus more on patient care. “This research highlights how AI can transform healthcare operations. Grouping tasks not only cuts costs but also optimizes resources that can be redirected toward improving patient outcomes,” said Dr. David L. Reich, co-author and chief clinical officer of the Mount Sinai Health System. The research team plans to explore how LLMs perform in live clinical environments and assess emerging models to determine whether advancements in AI technology can expand their cognitive thresholds. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Alphabet Soup of Cloud Terminology As with any technology, the cloud brings its own alphabet soup of terms. This insight will hopefully help you navigate Read more

Read More
Transforming the Role of Data Science Teams

Transforming the Role of Data Science Teams

GenAI: Transforming the Role of Data Science Teams Challenges, Opportunities, and the Evolving Responsibilities of Data Scientists Generative AI (GenAI) is revolutionizing the AI landscape, offering faster development cycles, reduced technical overhead, and enabling groundbreaking use cases that once seemed unattainable. However, it also introduces new challenges, including the risks of hallucinations and reliance on third-party APIs. For Data Scientists and Machine Learning (ML) teams, this shift directly impacts their roles. GenAI-driven projects, often powered by external providers like OpenAI, Anthropic, or Meta, blur traditional lines. AI solutions are increasingly accessible to non-technical teams, but this accessibility raises fundamental questions about the role and responsibilities of data science teams in ensuring effective, ethical, and future-proof AI systems. Let’s explore how this evolution is reshaping the field. Expanding Possibilities Without Losing Focus While GenAI unlocks opportunities to solve a broader range of challenges, not every problem warrants an AI solution. Data Scientists remain vital in assessing when and where AI is appropriate, selecting the right approaches—whether GenAI, traditional ML, or hybrid solutions—and designing reliable systems. Although GenAI broadens the toolkit, two factors shape its application: For example, incorporating features that enable user oversight of AI outputs may prove more strategic than attempting full automation with extensive fine-tuning. Differentiation will not come from simply using LLMs, which are widely accessible, but from the unique value and functionality they enable. Traditional ML Is Far from Dead—It’s Evolving with GenAI While GenAI is transformative, traditional ML continues to play a critical role. Many use cases, especially those unrelated to text or images, are best addressed with ML. GenAI often complements traditional ML, enabling faster prototyping, enhanced experimentation, and hybrid systems that blend the strengths of both approaches. For instance, traditional ML workflows—requiring extensive data preparation, training, and maintenance—contrast with GenAI’s simplified process: prompt engineering, offline evaluation, and API integration. This allows rapid proof of concept for new ideas. Once proven, teams can refine solutions using traditional ML to optimize costs or latency, or transition to Small Language Models (SMLs) for greater control and performance. Hybrid systems are increasingly common. For example, DoorDash combines LLMs with ML models for product classification. LLMs handle cases the ML model cannot classify confidently, retraining the ML system with new insights—a powerful feedback loop. GenAI Solves New Problems—But Still Needs Expertise The AI landscape is shifting from bespoke in-house models to fewer, large multi-task models provided by external vendors. While this simplifies some aspects of AI implementation, it requires teams to remain vigilant about GenAI’s probabilistic nature and inherent risks. Key challenges unique to GenAI include: Data Scientists must ensure robust evaluations, including statistical and model-based metrics, before deployment. Monitoring tools like Datadog now offer LLM-specific observability, enabling teams to track system performance in real-world environments. Teams must also address ethical concerns, applying frameworks like ComplAI to benchmark models and incorporating guardrails to align outputs with organizational and societal values. Building AI Literacy Across Organizations AI literacy is becoming a critical competency for organizations. Beyond technical implementation, competitive advantage now depends on how effectively the entire workforce understands and leverages AI. Data Scientists are uniquely positioned to champion this literacy by leading initiatives such as internal training, workshops, and hackathons. These efforts can: The New Role of Data Scientists: A Strategic Pivot The role of Data Scientists is not diminishing but evolving. Their expertise remains essential to ensure AI solutions are reliable, ethical, and impactful. Key responsibilities now include: By adapting to this new landscape, Data Scientists will continue to play a pivotal role in guiding organizations to harness AI effectively and responsibly. GenAI is not replacing them; it’s expanding their impact. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
AI-Driven Care Coordination Software

AI-Driven Care Coordination Software

Can AI-Driven Care Coordination Software Improve Workflows? University Hospitals is leveraging AI to enhance care coordination across its network of 13 hospitals and numerous outpatient settings. This effort highlights the transformative potential of AI-driven platforms in streamlining workflows, improving patient outcomes, and addressing clinician burnout. The Role of AI in Care Coordination Care coordination ensures seamless collaboration between healthcare providers, aiming for safe, appropriate, and effective treatment. Effective information-sharing can: According to the U.S. Centers for Medicare & Medicaid Services (CMS), poor care coordination can lead to: The Agency for Healthcare Research and Quality (AHRQ) advocates for a mix of technology adoption and care-specific strategies, such as proactive care plans tailored to patient needs. While electronic health records (EHRs) aid in these efforts, AI’s ability to analyze vast data sets positions it as the next evolution in care coordination. University Hospitals’ AI Initiative University Hospitals has partnered with Aidoc to deploy its AI-powered platform, aiOS, to improve radiology and care coordination workflows. Chair of Radiology Donna Plecha shared insights on how AI is already assisting in their operations: Best Practices for Implementing AI 1. Identify High-Value Use Cases: 2. Conduct Architectural Reviews: 3. Monitor ROI and Metrics: 4. Gain Clinician Buy-In: Looking Ahead AI is proving to be a valuable tool in care coordination, but its adoption requires realistic expectations and a thoughtful approach. Plecha underscores that AI won’t replace radiologists but will empower those who embrace it. As healthcare faces increasing patient volumes and clinician shortages, leveraging AI to reduce workloads and enhance care quality is becoming a necessity. With ongoing evaluations and phased implementations, University Hospitals is setting a precedent for how AI can drive innovation in care coordination while maintaining clinician oversight and patient trust. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
More Cool AI Tools

Salesforce Expands Partnership with AWS

Salesforce Expands Partnership with AWS: AI and Marketplace Integration Salesforce (NYSE: CRM) is making significant strides in its partnership with Amazon (NASDAQ: AMZN), unveiling an expanded collaboration at AWS. Customers can now purchase Salesforce products directly through the AWS Marketplace, paying with AWS credits. This integration aims to simplify access to Salesforce offerings, enhance data integration capabilities, and leverage generative AI tools. Key Announcements: Marc Benioff, Chair and CEO of Salesforce, highlighted the importance of this milestone: “We’re bringing together the No. 1 AI CRM provider and the leading cloud provider to deliver a trusted, open, integrated data and AI platform. With these enhancements to our partnership, we’re enabling all of our customers to be more innovative, productive, and successful in this new AI era.” AWS CEO Adam Selipsky echoed these sentiments, emphasizing how the partnership will enable joint customers to “innovate, collaborate, and build more customer-focused applications.” Strategic Benefits: Revenue-Sharing Structure: Like app stores, Amazon will take a percentage of Salesforce’s revenue generated through AWS Marketplace. Despite this, the potential growth in sales and efficiency gains may outweigh the costs. Market Reaction: Following the announcement, both Salesforce and Amazon shares experienced a boost in premarket trading, signaling investor optimism about the partnership’s potential. This expansion reinforces Salesforce’s strategy of aligning with major cloud providers to meet growing demand for AI-driven, integrated data platforms. As this collaboration evolves, it is poised to drive significant value for businesses navigating the AI and data revolution. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
ai arms race

AI Arms Race

AI Arms Race: Providers Catching Up to Payers in Claims Review The healthcare sector is in the midst of an escalating AI arms race as providers adopt the same artificial intelligence technologies payers are leveraging for claims review. Insurers currently lead this race, using AI to streamline processes such as prior authorizations, but experts predict providers will soon narrow the gap. Insurers’ AI Advantage Leading payers, including UnitedHealth, Humana, and Cigna, have integrated algorithmic decision tools to assess claims and determine coverage eligibility. These technologies allow insurers to flag services that fall outside plan criteria, ostensibly increasing efficiency. This trend is expanding, as evidenced by Blue Shield of California’s announcement of a partnership with Salesforce to pilot claims automation technology in early 2025. The nonprofit insurer claims this initiative will reduce prior authorization decision times from weeks or days to mere seconds, benefiting providers and patients alike. However, provider experiences paint a more contentious picture. Reports from lawmakers and healthcare executives suggest AI-driven claims processes lead to a surge in denials. For example, Providence CFO Greg Hoffman revealed that AI adoption by payers resulted in a 50% increase in underpayments and initial denials over two years, forcing providers to significantly increase manual interventions to resolve claims. A Battle for Balance The imbalance in AI adoption has prompted providers to take action. Experts like Jeffrey Cribbs, a vice president analyst at Gartner, see this as a forced “arms race” in which both sides are continually refining their tools. While payers focus on flagging potential exceptions, providers are working to develop systems for more efficient claims submissions and dispute resolution. Providence’s strategy includes outsourcing revenue cycle management to R1, a 10-year partnership designed to quickly address rising claims denials. Hoffman explained that building equivalent AI systems internally would take years, making partnerships essential for staying competitive in the short term. Collaboration Among Providers On the provider side, executives like Sara Vaezy, EVP and Chief Strategy Officer at Providence, emphasize the need for collaboration. She advocates for coalitions to share data and establish AI standards, which would allow providers to compete more effectively. Panelists at HLTH echoed this sentiment. Amit Phull, Chief Physician Experience Officer at Doximity, argued that AI could eventually “level the playing field” for providers by reducing the time required for claims documentation. Deloitte principal consultant Bill Fera added that AI would allow providers to quickly analyze policies and determine whether a patient qualifies for coverage under plan terms. The Road Ahead Despite the current disparity, experts believe AI will eventually equalize the claims review process. Providers are beginning to invest in tools that will help them handle vast amounts of data efficiently, offering clarity in disputes and cutting down documentation time. “It’s still early innings,” Phull said, “but the technology is going to go a long way toward leveling that playing field.” For now, however, insurers maintain the upper hand. As providers navigate the complexities of AI adoption, partnerships and collaboration may prove critical in ensuring they remain competitive in this rapidly evolving landscape. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
rise of digital workers

Rise of Digital Workers

The Rise of Digital Workers: Unlocking a New Era of Opportunity Over the past two years, advancements in artificial intelligence have sparked a revolution in how humans work, live, and connect. While impressive generative AI models have garnered significant attention, a new paradigm of autonomous AI agents is emerging, promising transformative changes to industries and societies alike. Unlike traditional “predictive AI,” which analyzes data for recommendations, and “generative AI,” which creates content based on learned patterns, autonomous AI agents go a step further. These agents operate independently, executing tasks, making decisions, and even negotiating with other agents. This evolution introduces an intelligent digital workforce capable of scaling operations, reducing costs, and enhancing productivity. Consider a large retailer during the holiday season. Instead of relying on human workers or pre-programmed software to address customer inquiries or update inventory, autonomous agents can seamlessly manage customer interactions, monitor stock levels, reorder items, and coordinate shipping—all without human intervention. This level of automation represents a groundbreaking shift, enabling businesses to operate on an unprecedented scale. Expanding the Reach of Digital Labor Autonomous AI agents are breaking traditional barriers of human availability and physical constraints, enabling businesses to scale globally and more efficiently. These digital workers are not limited by geography, opening opportunities previously restricted to specific locations. However, this shift comes with challenges. Ensuring trust, accountability, and transparency in AI systems is critical. Equally important is investing in human-centric skills such as creativity, critical thinking, and adaptability, which remain uniquely human. Sustainability is another concern, as AI-driven technologies place increasing demands on energy and resources. By addressing these issues, societies can unlock the full potential of digital labor while safeguarding the planet and human values. Transforming Everyday Lives Beyond businesses, autonomous agents are poised to transform personal lives. Personalized agents can act as tutors for students, guiding them through their learning journeys. For individuals, these agents can manage everyday tasks, from scheduling appointments to coordinating complex logistics. In healthcare, AI agents are already alleviating administrative burdens on providers. For example, intelligent agents can handle patient communications, monitor progress, and schedule follow-ups, freeing doctors and nurses to focus on complex cases. Such innovations hold the potential to revolutionize patient care and improve outcomes across the board. Navigating Disruption and Change Like any transformative technology, the rise of autonomous agents will bring disruptions. Some industries will struggle to adapt, and jobs will inevitably evolve—or, in some cases, disappear. History shows, however, that technological revolutions often create far more opportunities than they displace. For example, the U.S. workforce grew by over 100 million jobs between 1950 and 2020, many in industries that didn’t exist before. The key lies in preparing workers for new roles through education and training. Autonomous agents are essential in addressing global challenges such as labor shortages and stagnant productivity growth. They amplify human capabilities, driving innovation and boosting economic output. For example, in the third quarter of 2024, U.S. productivity rose by 2.2%, fueled in part by AI advancements. Driving Innovation and Collaboration AI agents are also fostering innovation, sparking the creation of new companies and industries. More than 5,000 AI-focused startups have emerged in the past decade in the U.S. alone. This trend mirrors the technological revolutions driven by past innovations like microchips, the internet, and smartphones. However, effectively harnessing agentic AI requires collaboration among governments, businesses, nonprofits, and academia. Initiatives like the G7’s framework for AI accountability and the Bletchley Declaration emphasize transparency, safety, and data privacy, offering critical guardrails as AI adoption accelerates. A Vision for the Future Autonomous agents represent a powerful force for change, offering unprecedented opportunities for businesses and individuals alike. By leveraging these technologies responsibly and investing in human potential, societies can ensure a future of abundance and progress. As Marc Benioff, CEO of Salesforce, emphasizes, “AI has the potential to elevate every company, fuel economic growth, uplift communities, and lead to a future of abundance. If trust is our north star, agents will empower us to make a meaningful impact at an unprecedented scale.” Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

Microsoft Copilot as “Repackaged ChatGPT”

Salesforce CEO Marc Benioff Criticizes Microsoft Copilot as “Repackaged ChatGPT” Salesforce CEO Marc Benioff took aim at Microsoft’s Copilot AI offerings during Salesforce’s latest quarterly earnings call, dismissing them as a rebranding of OpenAI’s generative AI technology. “In many ways, it’s just repackaged ChatGPT,” Benioff asserted. He contrasted this with Salesforce’s platform, emphasizing its unique ability to operate an entire business. “You won’t find that capability on Microsoft’s website,” he added. Benioff highlighted Agentforce, Salesforce’s autonomous AI agent product, as a transformative force for both Salesforce and its customers. The tool, available on Salesforce’s support portal, is projected to manage up to half of the company’s annual support case volume. The portal currently handles over 60 million sessions and 2 million support cases annually. Agentforce Adoption and Partner Involvement Salesforce COO Brian Millham outlined the significant role of partners in driving Agentforce adoption. During the quarter, global partners were involved in 75% of Agentforce deals, including nine of Salesforce’s top 10 wins. More than 80,000 system integrators have completed Agentforce training, and numerous independent software vendors (ISVs) and technology partners are developing and selling AI agents. Millham pointed to Accenture as a notable example, leveraging Agentforce to enhance sales operations for its 52,000 global sellers. “Our partners are becoming agent-first enterprises themselves,” Millham said. Since its general availability on October 24, Agentforce has already secured 200 deals, with thousands more in the pipeline. Benioff described the tool as part of a broader shift toward digital labor, claiming, “Salesforce is now the largest supplier of digital labor.” Expanding Use Cases and Market Impact Agentforce, powered by Salesforce’s extensive data repository of 740,000 documents and 200–300 petabytes of information, supports diverse use cases, including resolving customer issues, qualifying leads, closing deals, and optimizing marketing campaigns. Salesforce has committed to hiring 1,000–2,000 additional salespeople to expand Agentforce adoption further. Benioff positioned Salesforce as the leading enterprise AI provider, citing its 2 trillion weekly transactions through its Einstein AI product. He claimed Salesforce’s unified codebase provides a competitive edge, unlike rival systems that run disparate applications, potentially limiting AI effectiveness. “This is a bold leap into the future of work,” Benioff said, “where AI agents collaborate with humans to revolutionize customer interactions.” AI Growth Across Salesforce Products AI-driven growth extended beyond Agentforce to other Salesforce products: Millham noted that AI-related $1 million+ deals more than tripled year over year. Financial Highlights For Q3 FY2024, Salesforce reported: Looking ahead, Salesforce expects Q4 revenue between $9.9 billion and $10.1 billion, representing 7%–9% year-over-year growth. The company raised its full fiscal year revenue guidance to $37.8–$38 billion, an 8%–9% increase. Industry and Product Insights Salesforce’s growth was driven by its core clouds and subscription services, with health, life sciences, manufacturing, and automotive industries performing particularly well. However, retail and consumer goods saw slower growth. While subscription revenue for MuleSoft and Tableau decelerated, Salesforce’s broader portfolio continued to deliver robust performance. Benioff concluded by emphasizing the transformative potential of Salesforce’s AI ecosystem: “This is the next evolution of Salesforce—an intelligent, scalable technology that’s no longer tied to workforce growth.” Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Enhancing OR Efficiency with Ambient Sensor Technology

Enhancing OR Efficiency with Ambient Sensor Technology

Implementing ambient sensors in ORs can be challenging, as clinicians may feel uneasy about being recorded. Schwartz noted that emphasizing the benefits of the technology—such as improved accuracy and streamlined communication—has been essential in gaining clinician acceptance. DeDominico highlighted that the AI’s ability to send clinicians relevant updates, such as when a patient is ready for surgery, has increased clinician satisfaction by reducing unnecessary waiting.

Read More
AI-Driven Healthcare Approvals

AI-Driven Healthcare Approvals

Salesforce and Blue Shield of California are launching an AI-driven system to streamline healthcare approvals, aiming to cut down prior authorization wait times from weeks to, potentially, the same day. This partnership, leveraging Salesforce’s healthcare cloud, integrates patient data to streamline approvals while retaining clinician oversight, ensuring AI decisions are always reviewed by a human expert.

Read More
Cyber Insurance

Cyber Insurance

Navigating Cyber Insurance in an Evolving Threat Landscape The rapidly shifting cyberthreat landscape presents unique challenges for healthcare organizations and underwriters navigating cyber insurance coverage decisions. Cyber liability insurance plays a crucial role in shielding healthcare providers from the mounting costs associated with data breaches and cyberattacks, which now average $9.77 million per incident in the healthcare sector, according to IBM. The Challenges of Retaining Cyber Insurance Healthcare, among other heavily targeted sectors, faces difficulties in securing and maintaining affordable cyber insurance. The constantly evolving threat landscape impacts risk profiles, which drives up premiums and complicates coverage retention. Although year-over-year premium growth plateaued in the U.S. in 2023, 79% of respondents in a Delinea survey still reported increased insurance costs, with 67% experiencing premium hikes between 50% and 100%. As high-profile healthcare cyberattacks and increasing cyber risks persist, navigating the insurance landscape remains a significant challenge. Additionally, the lag in processing claims makes it difficult to anticipate how underwriters will respond to these changing threats. How the Evolving Threat Landscape Impacts Cyber Insurance Obtaining adequate cyber insurance coverage can be challenging in today’s risk-heavy environment. Unlike traditional insurance, where risks remain static, cyber risks constantly evolve to counteract security controls. “Cyber insurance risk adjusters face a unique challenge; unlike fires, which aren’t actively trying to burn you in new ways, cyberthreats are constantly adapting to bypass existing protections,” said Christopher Henderson, senior director of threat operations at Huntress. This continuous adaptation often means that by the time underwriting is complete, a risk assessment may already be outdated. Shifts in the threat landscape are driving changes in cyber insurance questionnaires. While in 2023 insurers focused on remote access tools, vulnerability management, and administrative access controls, the focus in 2024 shifted to include multifactor authentication (MFA) and identity-based attack prevention. This shift highlights the need for organizations to adapt to new requirements in cyber insurance as cybercriminals add new tactics to their playbooks. Adapting Insurance to Emerging Threats As cyberthreat tactics evolve, insurers may adjust policy terms to keep pace with the latest risks. Henderson suggests that insurers could move toward shorter underwriting cycles, possibly even six-month periods, to better align with the rapidly shifting cyber landscape. Mitigating Risk and Controlling Cyber Costs Several factors influence cyber insurance premiums, including organizational size and security posture. For healthcare providers, adhering to industry standards like SOC 2 and ISO 27001 can demonstrate compliance with best practices, improving coverage terms and potentially lowering premiums. Healthcare organizations using the NIST Cybersecurity Framework (CSF) as their primary security standard reported lower premium increases compared to those without this framework, according to a 2024 report by KLAS Research, Censinet, and the American Hospital Association. Henderson emphasizes the importance of layering new strategies with proven, traditional ones: “While staying vigilant against newer tactics like social engineering and identity-based attacks, maintaining consistent, auditable identity verification and MFA protocols remains crucial.” Despite upfront costs, cyber insurance can significantly reduce financial impact during cybersecurity incidents. For example, a 2024 Sophos report found that organizations with cyber insurance saw an average ransomware recovery cost of $2.94 million compared to $3.48 million for those without coverage. Navigating cyber insurance can be complex for healthcare organizations, but careful attention to risks and proactive security measures can help them secure the right coverage at sustainable rates. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more Top Ten Reasons Why Tectonic Loves the Cloud The Cloud is Good for Everyone – Why Tectonic loves the cloud You don’t need to worry about tracking licenses. Read more

Read More
gettectonic.com