Anthropic’s New Approach to RAG
advanced RAG methodology demonstrates how AI can overcome traditional challenges, delivering more precise, context-aware responses while maintaining efficiency and scalability.
advanced RAG methodology demonstrates how AI can overcome traditional challenges, delivering more precise, context-aware responses while maintaining efficiency and scalability.
Salesforce Unveils Data Cloud Vector Database with GenAI Integration Salesforce has officially launched its Data Cloud Vector Database, leveraging GenAI to rapidly process a company’s vast collection of PDFs, emails, transcripts, online reviews, and other unstructured data. Gen AI Unleased With Vector Database. Rahul Auradkar, Executive Vice President and General Manager of Salesforce Unified Data Services and Einstein Units, highlighted the efficiency gains in a one-on-one briefing with InformationWeek. Auradkar demonstrated the new capabilities through a live demo, showcasing the potential of the Data Cloud Vector Database. Enhanced Efficiency and Data Utilization The new Data Cloud integrates with the Einstein 1 platform, combining unstructured and structured data for rapid analysis by sales, marketing, and customer service teams. This integration significantly enhances the accuracy of Einstein Copilot, Salesforce’s enterprise conversational AI assistant. Gen AI Unleased With Vector Database Auradkar demonstrated how a customer service query could retrieve multiple relevant results within seconds. This process, which typically takes hours of manual effort, now leverages unstructured data, which makes up 90% of customer data, to deliver swift and accurate results. “This advancement allows our customers to harness the full potential of 90% of their enterprise data—unstructured data that has been underutilized or siloed—to drive use cases, AI, automation, and analytics experiences across both structured and unstructured data,” Auradkar explained. Comprehensive Data Management Using Salesforce’s Einstein 1 platform, Data Cloud enables users to ingest, store, unify, index, and perform semantic queries on unstructured data across all applications. This data encompasses diverse unstructured content from websites, social media platforms, and other sources, resulting in more accurate outcomes and insights. Auradkar emphasized, “This represents an order of magnitude improvement in productivity and customer satisfaction. For instance, a large shipping company with thousands of customer cases can now categorize and access necessary information far more efficiently.” Additional Announcements Salesforce also introduced several new AI and Data Cloud features: Auradkar noted that these innovations enhance Salesforce’s competitive edge by prioritizing flexibility and enabling customers to take control of their data. “We’ll continue on this journey,” Auradkar said. “Our future investments will focus on how this product evolves and scales. We’re building significant flexibility for our customers to use any model they choose, including any large language model.” For more insights and updates, visit Salesforce’s official announcements and stay tuned for further developments. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more
How Data Cloud Vector Databases Work 1. Ingest Unstructured Data in Data Cloud With the help of a new, unstructured data pipeline, relevant unstructured data for case deflection, such as product manuals or upgrade eligibility knowledge articles, can be ingested in Data Cloud and stored as unstructured data model objects. 2. Chunk and Transform Data for Use in AI In Data Cloud, teams will then be able to select the data that they want to use in processes like search, chunking this data into small segments before converting it into embeddings – numeric representations of data optimized for use in AI algorithms. This is done through the Einstein Trust Layer, which securely calls a special type of LLM called an “embedding model” to create the embeddings. It is then indexed for use in search across the Einstein 1 platform alongside structured data. How Data Cloud Vector Databases Work. 3. Store Embeddings in Data Cloud Vector Database In addition to supporting chunking and indexing of data, Data Cloud now natively supports storage of embeddings – a concept called “vector storage”. This frees up time for teams to innovate with AI instead of managing and securing an integration to an external vector database. 4. Analyze and Act on Unstructured Data Use familiar platform tools like Flow, Apex, and Tableau to use unstructured data, such as clustering customer feedback by semantic similarity and creating automations that alert teams when sentiment changes significantly. 5. Deploy AI Search in Einstein Copilot to Deflect Cases With relevant data, such as knowledge articles, securely embedded and stored in Data Cloud’s vector database, this data can also be activated for use in Einstein AI Search within Einstein Copilot. When a customer visits a self-service portal and asks for details on how to return a product, for example, the Einstein Copilot performs semantic search by converting the user query into an embedding, after which it compares that query to the embedded data in Data Cloud, retrieving the most semantically relevant information for use in its answer while citing the sources it pulled from. The end result is AI-powered search capable of understanding the intent behind a question and retrieving not just article links but exact passages that best answer the question, all of which are summarized through a customer’s preferred LLM into a concise, actionable answer – boosting customer satisfaction while deflecting cases. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more