Compliance Archives - gettectonic.com
Salesforce Energy and Utilities Cloud Explained

Salesforce Energy and Utilities Cloud Explained

Salesforce Energy and Utilities Cloud is a specialized industry solution built on the Salesforce platform, designed to meet the unique needs of energy and utility companies. It helps these organizations manage customer relationships, streamline operations, and drive digital transformation in an increasingly complex and regulated industry. The cloud solution provides tools for customer engagement, field service management, and regulatory compliance, among other functionalities. Key Features of Salesforce Energy and Utilities Cloud: Benefits of Salesforce Energy and Utilities Cloud: Use Cases: Implementation Considerations: In summary, Salesforce Energy and Utilities Cloud is a comprehensive solution designed to help energy and utility companies enhance customer engagement, streamline operations, and achieve regulatory compliance. By leveraging advanced technologies and industry-specific functionalities, utilities can drive digital transformation and improve overall performance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

The Evolving Role of AI Agents in Key Industries

Legal Services The future of AI in the legal field lies in deeper collaboration between human lawyers and AI systems. AI agents will handle routine document processing, contract analysis, and compliance checks, while legal professionals focus on strategy, negotiation, and final validation. This approach ensures efficiency without compromising accuracy or legal accountability. Finance The financial sector has been an early adopter of AI agents, leveraging them for market analysis, trading, and risk management. 1. Market Analysis & Research 2. Trading & Investment 3. Risk Management Current Limitations: While results are promising, financial AI applications require strict risk management and regulatory oversight. Most firms start with narrowly scoped use cases—such as single-asset trading—before expanding into complex portfolio management. Research & Science AI agents are transforming scientific research by accelerating discovery while maintaining rigorous methodology. A multi-agent approach is proving valuable throughout the research lifecycle: This framework has already shown success in chemistry, where AI agents have identified novel catalysts and reaction pathways. With Google’s Gemini Deep Research, AI-driven knowledge synthesis is expanding beyond specialized fields to broader scientific domains. Challenges & Considerations: The key to success is integrating AI agents into existing research methodologies while preserving scientific rigor. Emerging AI Agent Trends Across industries, three core patterns define the evolution of AI agents: While AI agents hold immense potential, most industries remain in an experimental phase of adoption. Many organizations start with Retrieval-Augmented Generation (RAG) before advancing to fully autonomous agents. The Challenge of Implementation Adopting AI agents requires careful evaluation of their benefits vs. complexity: Organizations must balance innovation, security, and operational efficiency to maximize the impact of AI agents in their industries. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Financial Services Sector

Future of Financial Services

The Future of Financial Services: AI Agents, Consumer Trust, and Digital Transformation Fewer than half of consumers are fully satisfied with the service they receive from banks, insurance providers, and wealth management advisors. This underscores the urgent need for financial service institutions (FSIs) to prioritize standout customer experiences—both human and digital—leveraging AI agents to enhance personalization, efficiency, and responsiveness. Why Customer Experience is Key Consumer loyalty has long been driven by competitive pricing, fees, and interest rates. However, with declining rates making promotional incentives less feasible, FSIs are refocusing on customer service as a key differentiator. AI-powered digital experiences provide an opportunity to exceed customer expectations, offering speed, convenience, and hyper-personalization at scale. A significant portion of consumers are willing to stay with an institution that offers an exceptional experience, even if it raises its rates or fees. For instance, 46% of consumers—and 55% of high earners in the U.S. (households making over $100,000 per year)—value experience over pricing alone. Digital self-service is a primary component of this enhanced experience, with many consumers preferring to complete tasks online rather than through traditional phone or in-branch interactions. Institutions like Credit Unions are already meeting this demand by deploying self-service tools that provide instant resolutions, 24/7. AI Agents: Transforming the FSI Landscape AI agents represent a major leap forward in customer service, automating interactions and resolving issues without human intervention. However, trust in these AI-driven systems remains a work in progress. Only 41% of wealth management clients report being fully satisfied with their institution’s speed and effectiveness, and satisfaction levels are even lower among banking and insurance customers. Despite some skepticism, AI adoption is accelerating. Half of consumers expect AI to significantly impact their financial relationships, a belief even more pronounced among Millennials and Gen Z. The percentage of customers anticipating AI-driven transaction speed improvements has risen from 46% in 2023 to 65% today. Yet, consumer education on AI’s capabilities remains a challenge. AI agents have the potential to act as financial advisors, enhancing financial literacy, optimizing savings, and even increasing earnings. Salesforce’s Agentforce aims to bridge this gap, offering digital financial assistants that can answer questions like, “Am I saving enough for retirement?” or “Can I afford this vacation?”—delivering expert insights instantly and at scale. Building Trust in AI-Powered Finance Despite AI’s promise, trust issues persist. While 54% of consumers express confidence in AI agents, only 10% fully trust them. This skepticism is fueled by concerns over data privacy, security, and transparency. Many consumers are wary of how FSIs handle their personal information and are seeking greater clarity on AI’s role in financial decision-making. A Salesforce study revealed that 73% of consumers want to know when they’re interacting with AI, highlighting the importance of transparency in AI implementation. “For AI to succeed in financial services, trust and compliance must be built into the foundation,” said Eran Agrios, SVP & GM of Financial Services at Salesforce. “FSIs need to ensure their AI strategies are not only effective but also worthy of customer confidence.” AI in Action: Case Studies in Financial Services Financial institutions leveraging Agentforce are already seeing tangible benefits: Integrating Agentforce with ERP for Maximum Impact To maximize the potential of AI agents, FSIs must integrate them seamlessly into their broader enterprise ecosystems. Best practices for integration include: The Next Two Years: Defining the Future of AI in Finance As AI continues to disrupt the financial sector, FSIs that embrace AI-first strategies will outperform competitors in efficiency, security, and customer experience. Here’s what the future holds: The Takeaway Financial institutions that invest in AI-driven experiences today will define the future of finance. By adopting transparent, compliant, and consumer-centric AI strategies, FSIs can build trust, drive efficiency, and deliver exceptional customer experiences that set them apart in an increasingly AI-powered world. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Data Cloud

Maximizing Salesforce Data Cloud

Maximizing Salesforce Data Cloud: Post-Implementation Strategies for Long-Term Success The Fastest-Growing Salesforce Product Salesforce Data Cloud is seeing explosive growth, with a 130% year-over-year increase in paid customers. In just one quarter, it processed an astonishing 2.3 quadrillion records—a 147% jump from the previous year. Businesses leveraging Data Cloud have seen a 165% boost in web engagement, with major brands like The Adecco Group, Aston Martin, and FedEx using it to strengthen customer relationships and drive growth. The Power of Data Cloud: Turning Information into Action What makes Salesforce Data Cloud so impactful is its ability to unify vast amounts of data, creating 360-degree customer profiles and transforming insights into action. But unlocking its full potential doesn’t stop at implementation—it requires ongoing optimization to keep your data clean, your systems efficient, and your AI models accurate. Post-Implementation Best Practices for Salesforce Data Cloud Once your Salesforce Data Cloud is up and running, the next step is ensuring long-term performance and business value. Here’s how to optimize and sustain your Data Cloud investment: 1. Maintain Data Integrity with Ongoing Quality Management 2. Optimize System Performance for Speed and Efficiency 3. Drive User Adoption with Tailored Training 4. Strengthen Data Governance and Compliance 5. Proactively Manage and Optimize Integrations 6. Refine Customer Segmentation for More Personalization 7. Keep AI and Predictive Models Up to Date 8. Measure ROI and Optimize for Business Impact 9. Foster a Data-Driven Culture Through Clear Communication 10. Stay Agile with Continuous Innovation and Community Engagement Conclusion: The Real Value of Data Cloud Begins After Implementation Salesforce Data Cloud is at the heart of next-gen customer engagement, but its true impact lies in how well you maintain and optimize it. Success depends on:✅ Involving key stakeholders in ongoing improvements✅ Enforcing strong data governance for security and accuracy✅ Continuously refining processes to adapt to changing business needs By committing to post-implementation optimization, your organization can stay agile, data-driven, and ahead of the competition—ensuring that Salesforce Data Cloud delivers maximum value now and in the future. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Why Its Good to be Data-Driven

The Power of Data-Driven Decision Making Success in business hinges on the ability to make informed decisions. Every operational aspect, from minor choices like office furniture selection to critical investments such as multi-million-dollar marketing campaigns, is shaped by a series of interrelated decisions. While instinct and intuition may play a role, most business choices rely on relevant data—covering aspects such as objectives, pricing, technology, and potential risks. However, excess irrelevant data can be just as detrimental as insufficient accurate data. Why Its Good to be Data-Driven organization… The Evolution of Data-Driven Decision Making Organizations that prioritize data-driven strategies rely on accurate, relevant, complete, and timely data. Simply amassing large volumes of information does not equate to better decision-making; companies must democratize data access, ensuring it is available to all employees rather than limited to data analysts. The practice of using data to inform business decisions gained traction in the mid-20th century when researchers identified decision-making as dynamic, complex, and often ambiguous. Early techniques like decision trees and prospect theory emerged in the 1970s alongside computer-aided decision-making models. The 1980s saw the rise of commercial decision support systems, and by the early 21st century, data warehousing and data mining revolutionized analytics. However, without clear governance and organizational policies, these vast data stores often fell short of their potential. Today, the goal of data-driven decision-making is to combine automated decision models with human expertise, creativity, and critical thinking. This approach requires integrating data science with business operations, equipping managers and employees with powerful decision-support tools. Characteristics of a Data-Driven Organization A truly data-driven organization understands the value of its data and maximizes its potential through structured alignment with business objectives. To safeguard and leverage data assets effectively, businesses must implement governance frameworks ensuring compliance with privacy, security, and integrity standards. Key challenges in establishing a data-driven infrastructure include: The Benefits of a Data-Driven Approach Businesses recognize that becoming data-driven requires more than just investing in technology; success depends on strategy and execution. According to KPMG, four critical factors contribute to the success of data-driven initiatives: A data-driven corporate culture accelerates decision-making, enhances employee engagement, and increases overall business value. Integrating ethical considerations into data usage is crucial for mitigating biases and maintaining data integrity. Transitioning to a Data-Driven Business With the rapid advancement of generative AI, data-driven organizations are poised to unlock trillions of dollars in economic value. McKinsey estimates that AI-driven decision-making could add between .6 trillion and .4 trillion annually across key sectors, including customer operations, marketing, software engineering, and R&D. To successfully transition into a data-driven organization, companies must: By embracing a data-driven model, organizations enhance their ability to make automated yet strategically sound decisions. With seamless data integration across CRM, ERP, and business applications, companies empower human decision-makers to apply their expertise to high-quality, actionable insights—driving innovation and competitive advantage in a rapidly evolving marketplace. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Prioritize Data Quality

Prioritize Data Quality

Prioritize Data Quality: Strengthening Governance for AI and Business Success 86% of analytics and IT leaders agree: AI’s effectiveness depends on the quality of its data inputs. High data quality brings organizations closer to data maturity and AI success—and it all starts with strong data governance. 🔹 92% of analytics and IT leaders say there’s never been a greater need for trustworthy data.📊 The State of Data and Analytics Report, 2023 Building a Strong Data Governance Strategy Data governance is more than compliance—it’s a structured approach to managing data quality, security, and usability. With the right governance in place, teams gain confidence in their data, leading to smarter decision-making and a culture of trust. Follow these six steps to lay the foundation for a successful governance strategy: 1. Align Governance Policies with Business Needs Meet with stakeholders to understand how data is used across teams. Ensure governance policies cover every critical workflow and use case, helping teams get the data they need—accurately and securely. 2. Define What ‘Data Quality’ Means for Your Organization Create a clear framework using these key data quality dimensions: ✅ Completeness: Are all necessary data fields populated?✅ Timeliness: Is data up to date and aligned with business goals?✅ Validity: Does data comply with governance rules and constraints?✅ Usage: How frequently is the data used for reporting and decision-making?✅ Accuracy: Does the data reflect reality, and is it sourced from trusted origins?✅ Consistency: Are data formatting and structure standardized across sources?✅ Reliability: Has data maintained quality and consistency over time? 3. Implement a Robust Quality Control Process Standardized processes—data entry validation, deduplication, cleansing, and archiving—are essential for governance. Leverage AI-powered tools like Tableau CRM Analytics to automate these tasks with built-in data profiling and enrichment features. 4. Schedule Regular Governance Reviews Your business evolves—your governance strategy should too. Establish a review cadence to assess policies, update processes, and address new data challenges. 5. Train Teams on Data Security and Compliance Education is key. Assign role-based security permissions, ensure regulatory compliance, and provide a clear process for reporting data issues (e.g., a dedicated Slack channel or help desk). 6. Define Success with Data Governance KPIs Tracking governance effectiveness is essential. Use these key metrics to measure impact: Metric Example of Smart KPI How to Track Data Quality Improve overall data quality by 4% per quarter. Assign values to frequency, error rates, and data usage. Data Usage Increase customer data-driven decision-making by 30% in 12 months. Measure employee logins, reports accessed, and data utilization. Time-to-Insight Reduce time from customer action → dashboard update to 10 minutes by next quarter. Track time-to-insight vs. benchmarks. Moving Up the Data Maturity Curve A well-governed data strategy leads to: 📈 Higher efficiency in decision-making🚀 More successful AI and analytics initiatives🏆 Competitive advantage through trustworthy data 🔍 “Ascending the data maturity curve unlocks new efficiencies and a competitive edge.”— Funke Bishi, Associate Director, Data and Business Analysis, RBC Capital Markets Take Action: Strengthen Your Data Governance ✅ Define what ‘quality data’ means for your business.✅ Align governance policies with team needs.✅ Use AI-powered tools like Tableau Data Prep for automated cleansing.✅ Train leaders on data best practices and compliance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agents

AI Agents in Action: Real-World Applications

The true potential of AI agents lies in their practical use across industries. Let’s explore how different sectors are leveraging AI agents to solve real challenges. Software Development The shift from simple code completion to autonomous software development highlights AI’s expanding role in engineering. While GitHub Copilot introduced real-time coding assistance in 2021, today’s AI agents—like Devin—can manage end-to-end development, from setting up environments to deployment. Multi-agent frameworks, such as MetaGPT, showcase how specialized AI agents collaborate effectively: While AI agents lack human limitations, this shift raises fundamental questions about development practices shaped over decades. AI excels at tasks like prototyping and automated testing, but the true opportunity lies in rethinking software development itself—not just making existing processes faster. This transformation is already affecting hiring trends. Salesforce, for example, announced it will not hire new software engineers in 2025, citing a 30% productivity increase from AI-driven development. Meanwhile, Meta CEO Mark Zuckerberg predicts that by 2025, AI will reach the level of mid-level software engineers, capable of generating production-ready code. However, real-world tests highlight limitations. While Devin performs well on isolated tasks like API integrations, it struggles with complex development projects. In one evaluation, Devin successfully completed only 3 out of 20 full-stack tasks. In contrast, developer-driven workflows using tools like Cursor have proven more reliable, suggesting that AI agents are best used as collaborators rather than full replacements. Customer Service The evolution from basic chatbots to sophisticated AI service agents marks one of the most successful AI deployments to date. Research by Sierra shows that modern AI agents can handle complex tasks—such as flight rebookings and multi-step refunds—previously requiring multiple human agents, all while maintaining natural conversation flow. Key capabilities include: However, challenges remain, particularly in handling policy exceptions and emotionally sensitive situations. Many companies address this by limiting AI agents to approved knowledge sources and implementing clear escalation protocols. The most effective approach in production environments has been a hybrid model, where AI agents handle routine tasks and escalate complex cases to human staff. Sales & Marketing AI agents are now playing a critical role in structured sales and marketing workflows, such as lead qualification, meeting scheduling, and campaign analytics. These agents integrate seamlessly with CRM platforms and communication tools while adhering to business rules. For example, Salesforce’s Agentforce processes customer interactions, maintains conversation history, and escalates complex inquiries when necessary. 1. Sales Development 2. Marketing Operations Core capabilities: However, implementing AI in sales and marketing presents challenges: A hybrid approach—where AI manages routine tasks and data-driven decisions while humans focus on relationship-building and strategy—has proven most effective. Legal Services AI agents are also transforming the legal industry by processing complex documents and maintaining compliance across jurisdictions. Systems like Harvey can break down multi-month projects, such as S-1 filings, into structured workflows while ensuring regulatory compliance. Key capabilities: However, AI-assisted legal work faces significant challenges. Validation and liability remain critical concerns—AI-generated outputs require human review, and the legal responsibility for AI-assisted decisions is still unresolved. While AI excels at document processing and legal research, strategic decisions remain firmly in human hands. Final Thoughts Across industries, AI agents are proving their value in automation, efficiency, and data-driven decision-making. However, fully autonomous systems are not yet replacing human expertise—instead, the most successful implementations involve AI-human collaboration, where agents handle repetitive tasks while humans oversee complex decision-making. As AI technology continues to evolve, businesses must strike the right balance between automation, control, and human oversight to maximize its potential. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Achieving AI Success Starts with Data Maturity

Achieving AI Success Starts with Data Maturity

True AI success depends on data maturity. But what does that mean in practice? Organizations with high data maturity: The Path to Data Maturity Reaching data maturity requires a strategic commitment to: ✅ Develop a unified data strategy that aligns business and data teams toward common goals.✅ Implement strong data management and governance to ensure accuracy and trust.✅ Leverage advanced data solutions to transform raw data into actionable insights.✅ Prioritize security and compliance to protect data from breaches.✅ Foster a data-driven culture where every employee has the skills to analyze and act on insights. See How John Lewis & Partners Unlocks AI + Data-Driven Personalization “Investing in Salesforce has enabled us to make decisions faster and develop deeper relationships with our customers by providing a more personalized, convenient, and seamless customer experience.” — Libby Hickey, Tableau Product Manager, John Lewis & Partners Assess Your Data Maturity Ready to accelerate your data transformation? 📊 Take the free assessment to: Start your data maturity journey today. Contact Tectonic. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Data Cloud and Integration

It is Time to Implement Data Cloud

With Salesforce Data Cloud you can: With incomplete data your 360-degree customer view is limited and often leads to multiple sales reps working on the same lead. Slow access to the right leads at the right time leads to missed opportunties and delayed closings. If your team cannot trust the data due to siloes and inaccuracies, they avoid using it. It is Time to Implement Data Cloud. Unified Connect and harmonize data from all your Salesforce applications and external data systems. Then activate your data with insights and automation across every customer touchpoint. Powerful With Data Cloud and Agentforce, you can create the most intelligent agents possible, giving them access to the exact data they need to deliver any employee or customer experience. Secure Securely connect your data to any large language model (LLM) without sacrificing data governance and security thanks to the Einstein 1 trust layer. Open Data Cloud is fully open and extensible – bring your own data lake or model to reduce complexity and leverage what’s already been built. Plus, share out to popular destinations like Snowflake, Google Ads, or Meta Ads. Salesforce Data Cloud is the only hyperscale data engine native to Salesforce. It is more than a CDP. It goes beyond a data lake. You can do more with Data Cloud. Your Agentforce journey begins with Data Cloud. Agents need the right data to work. With Data Cloud, you can create the most intelligent agents possible, giving them access to the exact data they need to deliver any employee or customer experience. Use any data in your organization with Agentforce in a safe and secure manner thanks to the Einstein 1 Trust Layer. Datablazers are Salesforce community members who are passionate about driving business growth with data and AI powered by Data Cloud. Sign up to join a growing group of members to learn, connect, and grow with Data Cloud. Join today. The path to AI success begins and ends with quality data. Business, IT, and analytics decision makers with high data maturity were 2x more likely than low-maturity leaders to have the quality data needed to use AI effectively, according to our State of Data and Analytics report. “What’s data maturity?” you might wonder. Hang tight, we’ll explain in chapter 1 of this guide. Data-leading companies also experience: Your data strategy isn’t just important, it’s critical in getting you to the head of the market with new AI technology by your side. That’s why this Salesforce guide is based on recent industry findings and provides best practices to help your company get the most from your data. Tectonic will be sharing a focus on the 360 degree customer view with Salesforce Data Cloud in our insights. Stay tuned. It is Time to Implement Data Cloud Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Future of AI in Salesforce

The Future of AI in Salesforce

The Future of AI in Salesforce: Smarter, Predictive, and Deeply Integrated Artificial Intelligence (AI) is revolutionizing the Salesforce ecosystem, reshaping customer interactions, automating workflows, and driving revenue growth. As we move into 2025 and beyond, AI within Salesforce will become even more intelligent, predictive, and seamlessly embedded across the platform. Let’s explore the key advancements defining the next era of AI in Salesforce. 1. Next-Gen Einstein AI: A Smarter CRM Assistant Salesforce Einstein continues to evolve, equipping businesses with powerful AI-driven capabilities: 2. AI-Powered Revenue Intelligence & Forecasting AI is transforming revenue intelligence, helping sales teams make data-driven decisions: 3. AI-Driven Sales & Service Automation AI-powered automation will streamline workflows and improve efficiency: 4. Hyper-Personalization with AI & Data Cloud Salesforce Data Cloud and AI will power personalized customer experiences at scale: 5. AI-Optimized Lead Generation & Marketing Automation AI will continue to enhance lead generation and marketing strategies: 6. AI & Low-Code/No-Code Innovation Salesforce is democratizing AI with accessible low-code and no-code tools: 7. Ethical AI & Governance: Building Trust in AI Salesforce remains committed to ethical, transparent, and bias-free AI: Conclusion As AI becomes deeply embedded in every Salesforce cloud, businesses will experience faster automation, smarter decision-making, and hyper-personalized customer engagement. From AI-powered sales forecasting to generative AI-driven content, the future of Salesforce AI is set to redefine CRM strategies in 2025 and beyond. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com