Customer Service - gettectonic.com - Page 2
AI Productivity Paradox

AI Productivity Paradox

The AI Productivity Paradox: Why Aren’t More Workers Using AI Tooks Like ChatGPT?The Real Barrier Isn’t Technical Skills — It’s Time to Think Despite the transformative potential of tools like ChatGPT, most knowledge workers aren’t utilizing them effectively. Those who do tend to use them for basic tasks like summarization. Less than 5% of ChatGPT’s user base subscribes to the paid Plus version, indicating that a small fraction of potential professional users are tapping into AI for more complex, high-value tasks. Having spent over a decade building AI products at companies such as Google Brain and Shopify Ads, the evolution of AI has been clearly evident. With the advent of ChatGPT, AI has transitioned from being an enhancement for tools like photo organizers to becoming a significant productivity booster for all knowledge workers. Most executives are aware that today’s buzz around AI is more than just hype. They’re eager to make their companies AI-forward, recognizing that it’s now more powerful and user-friendly than ever. Yet, despite this potential and enthusiasm, widespread adoption remains slow. The real issue lies in how organizations approach work itself. Systemic problems are hindering the integration of these tools into the daily workflow. Ultimately, the question executives need to ask isn’t, “How can we use AI to work faster? Or can this feature be built with AI?” but rather, “How can we use AI to create more value? What are the questions we should be asking but aren’t?” Real-world ImpactRecently, large language models (LLMs)—the technology behind tools like ChatGPT—were used to tackle a complex data structuring and analysis task. This task would typically require a cross-functional team of data analysts and content designers, taking a month or more to complete. Here’s what was accomplished in just one day using Google AI Studio: However, the process wasn’t just about pressing a button and letting AI do all the work. It required focused effort, detailed instructions, and multiple iterations. Hours were spent crafting precise prompts, providing feedback, and redirecting the AI when it went off course. In this case, the task was compressed from a month-long process to a single day. While it was mentally exhausting, the result wasn’t just a faster process—it was a fundamentally better and different outcome. The LLMs uncovered nuanced patterns and edge cases within the data that traditional analysis would have missed. The Counterintuitive TruthHere lies the key to understanding the AI productivity paradox: The success in using AI was possible because leadership allowed for a full day dedicated to rethinking data processes with AI as a thought partner. This provided the space for deep, strategic thinking, exploring connections and possibilities that would typically take weeks. However, this quality-focused work is often sacrificed under the pressure to meet deadlines. Ironically, most people don’t have time to figure out how they could save time. This lack of dedicated time for exploration is a luxury many product managers (PMs) can’t afford. Under constant pressure to deliver immediate results, many PMs don’t have even an hour for strategic thinking. For many, the only way to carve out time for this work is by pretending to be sick. This continuous pressure also hinders AI adoption. Developing thorough testing plans or proactively addressing AI-related issues is viewed as a luxury, not a necessity. This creates a counterproductive dynamic: Why use AI to spot issues in documentation if fixing them would delay launch? Why conduct further user research when the direction has already been set from above? Charting a New Course — Investing in PeopleProviding employees time to “figure out AI” isn’t enough; most need training to fully understand how to leverage ChatGPT beyond simple tasks like summarization. Yet the training required is often far less than what people expect. While the market is flooded with AI training programs, many aren’t suitable for most employees. These programs are often time-consuming, overly technical, and not tailored to specific job functions. The best results come from working closely with individuals for brief periods—10 to 15 minutes—to audit their current workflows and identify areas where LLMs could be used to streamline processes. Understanding the technical details behind token prediction isn’t necessary to create effective prompts. It’s also a myth that AI adoption is only for those with technical backgrounds under 40. In fact, attention to detail and a passion for quality work are far better indicators of success. By setting aside biases, companies may discover hidden AI enthusiasts within their ranks. For example, a lawyer in his sixties, after just five minutes of explanation, grasped the potential of LLMs. By tailoring examples to his domain, the technology helped him draft a law review article he had been putting off for months. It’s likely that many companies already have AI enthusiasts—individuals who’ve taken the initiative to explore LLMs in their work. These “LLM whisperers” could come from any department: engineering, marketing, data science, product management, or customer service. By identifying these internal innovators, organizations can leverage their expertise. Once these experts are found, they can conduct “AI audits” of current workflows, identify areas for improvement, and provide starter prompts for specific use cases. These internal experts often better understand the company’s systems and goals, making them more capable of spotting relevant opportunities. Ensuring Time for ExplorationBeyond providing training, it’s crucial that employees have the time to explore and experiment with AI tools. Companies can’t simply tell their employees to innovate with AI while demanding that another month’s worth of features be delivered by Friday at 5 p.m. Ensuring teams have a few hours a month for exploration is essential for fostering true AI adoption. Once the initial hurdle of adoption is overcome, employees will be able to identify the most promising areas for AI investment. From there, organizations will be better positioned to assess the need for more specialized training. ConclusionThe AI productivity paradox is not about the complexity of the technology but rather how organizations approach work and innovation. Harnessing AI’s potential is simpler than “AI influencers” often suggest, requiring only

Read More
AI Agent Trends

AI Agent Trends

AI Agents: Key Statistics and Trends for 2025 “The agent revolution is real and as exciting as the cloud, social, and mobile revolutions,” remarked Salesforce Chair and CEO Marc Benioff. “It will provide a level of transformation that we’ve never seen.” With the general availability of Agentforce, the era of AI-powered agents is officially here. These intelligent software agents, designed to perform tasks autonomously or in collaboration with humans, are already transforming businesses by driving efficiency and improving customer outcomes. AI Agents in Action Companies across the globe are leveraging AI agents to achieve remarkable results. For example, Wiley has seen a 40% boost in case resolution rates with Agentforce, far surpassing their previous bot’s performance. Other success stories from Saks and Opentable reinforce the ROI potential of this groundbreaking technology. Salesforce research highlights data from consumers, employees, and business leaders worldwide, demonstrating how AI agents address key pain points while unlocking significant opportunities for enterprises and individuals alike. Why Consumers Need AI Agents Traditional customer service processes often frustrate consumers, leading to inefficiency and dissatisfaction: AI agents are transforming this landscape with immediate, personalized assistance that minimizes wait times and eliminates repeated explanations. Consumer sentiment indicates a growing acceptance of this technology: Why Enterprises Need AI Agents For enterprises, inefficiency is a persistent challenge. Time-consuming administrative tasks often prevent workers from focusing on strategic, customer-centric activities: AI adoption is increasingly a priority for revenue-generating teams, with measurable benefits: Salesforce experts emphasize that while AI has already proven its value in service, sales, marketing, and commerce, the surface of its potential has only just been scratched. The Agent-First Future As organizations adopt an agent-first approach, they unlock opportunities to redefine operations, increase efficiency, and drive innovation: AI agents are not just the future—they’re the present solution to enduring challenges, empowering businesses to meet the demands of a rapidly evolving digital economy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Generative AI Energy Consumption Rises

AI for the Ho-Ho-Holidays

The Holiday Rush and AI’s Growing Role in Retail The holiday season is approaching quickly, with fewer days between Thanksgiving and Christmas this year than at any time since 2019. This condensed timeline makes Salesforce’s latest State of the Connected Customer report—this year titled State of the AI Connected Customer—particularly timely. The report, based on insights from over 15,000 consumers worldwide, focuses on the growing role of artificial intelligence (AI), specifically AI agents, in transforming customer experiences. With Salesforce’s recent launch of Agentforce, AI agents have taken center stage. According to Michael Affronti, SVP and General Manager of Commerce Cloud at Salesforce, the retail sector is already exploring this technology: “Retailers that we talk to are starting to implement AI agents. Unlike chatbots, AI agents can analyze customer data to make proactive recommendations and even take action. For consumers, AI agents create smoother checkout experiences, streamline returns, and deliver personalized shopping that feels like working with an incredible in-store associate. For retailers, AI agents drive higher margins and customer retention by delivering exceptional service. As we like to say, ‘There’s an agent for that.’” Rebuilding Trust with AI One of the most compelling use cases for AI agents, according to Affronti, lies in addressing declining consumer trust. Salesforce’s research highlights alarming trends: AI agents present an opportunity to rebuild trust by delivering reliable and transparent experiences. While consumer expectations for personalized service remain high, Salesforce data suggests that 30% of consumers would work with AI agents if it meant faster service. However, skepticism persists—curiosity is the top emotion associated with AI, followed closely by suspicion and anxiety. Transparency is crucial, as 40% of consumers are more likely to trust AI agents when their logic is explained, and there’s an option to escalate to a human. “Most people just want to know it’s AI, and then they’ll be comfortable,” Affronti notes. “Clarity about what the agent is doing, combined with the ability to talk to a real person, builds trust.” Three Opportunities for Retailers Affronti outlines three key strategies for retailers to embrace AI agents effectively this holiday season: Experimentation and Preparing for the Future For retailers not yet leveraging AI, Affronti advises starting small but experimenting now. For example, large brands like Saks are already piloting AI agents such as “Sophie,” which handles tasks like order management and learns new capabilities based on customer feedback. However, smaller businesses can also benefit from AI tools, such as generative AI for writing product descriptions or automating promotions, regardless of scale. “One of the great things about AI today is how democratized it has become,” Affronti explains. “Small businesses using Salesforce’s Commerce Cloud can leverage AI for tasks like creating product descriptions or automating translations, even if their catalog is limited.” Looking Ahead While this holiday season may not see a widespread rollout of AI-driven retail solutions, early adopters are already showcasing what’s possible. Retailers that embrace experimentation and lay the groundwork for AI-powered experiences today will likely see significant results by the 2025 holiday season. The key takeaway: now is the time to build the foundation for the future of AI in retail. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agents to Provide Faster Resolutions

AI Agents to Provide Faster Resolutions

Brands are increasingly deploying AI agents to provide faster resolutions for common customer service issues, reaping the benefits of automation to improve customer experiences. According to new research from Salesforce, consumers lose up to a full business day resolving a single customer service issue, and one-third of interactions leave customers without a solution. However, younger generations, including Gen Z and Millennials, are more open to using autonomous AI agents to address these challenges. AI Agents to Provide Faster Resolutions As the holiday shopping season begins, AI agents are poised to handle routine tasks such as password resets, item returns, and refund processing. “Brands launching these AI-driven experiences will find them increasingly helpful,” said Sanjna Parulekar, VP of Product at Salesforce. “My message to consumers is to embrace these tools and give them another shot.” Some companies, like Saks, are already leveraging AI agents to streamline processes like returns and refunds. For those unsure whether they’re interacting with a bot or a human, Parulekar emphasizes that agents should clearly introduce themselves and inform customers when a transfer to a human representative occurs. With AI reshaping customer service, brands aim to transform frustrating experiences into efficient, seamless interactions. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Salesforce Data Migration Tools

Salesforce Data Migration Tools

In the current age of digital transformation, effective data migration is essential, especially as cloud adoption accelerates. Research from Foundry reveals that 63% of IT leaders have increased their cloud migrations, but 90% face challenges—primarily budgetary constraints. This highlights the importance of thoughtful planning and strategic execution. In this context, we’ll explore the significance of successful Salesforce data migration and present a nine-step roadmap to ensure a seamless transition. Additionally, we’ll cover solutions for data preparation and the top five Salesforce data migration tools that can help turn migration challenges into growth opportunities. Salesforce Data Migration ChecklistDownload our e-book to quickly and efficiently migrate data from Excel spreadsheets and CRM systems to Salesforce. Why is Data Migration Important?In 2010, I bought my first smartphone and struggled to transfer data from my outdated phone. My contacts were vital, but the old phone lacked proper data transfer options. Determined not to re-enter everything manually, I searched for a solution. Eventually, I found a method to extract data into a CSV file, which I converted to vCard format to transfer successfully. This experience reinforced how essential data migration is—not only for businesses but also for everyday situations. For organizations looking to modernize, data migration is a crucial step in upgrading IT infrastructure. It enables smooth transitions from legacy systems to modern platforms like Salesforce, enhancing efficiency, scalability, and data accessibility. Effective data migration improves data management, reduces costs tied to outdated systems, and supports better decision-making through improved analytics. It also ensures data integrity and security, aligning IT capabilities with evolving business needs, fostering innovation, and keeping a competitive edge. What is Data Migration in Salesforce?Whether you are already using Salesforce or considering adoption, one common question arises: “How do I migrate my data to Salesforce?” Salesforce data migration involves moving information from external systems like legacy CRMs or local databases into Salesforce. This process is critical not only for protecting data integrity but also for enabling better decision-making, improving customer service, and promoting organizational growth. A well-planned data migration strategy ensures a smooth transition to Salesforce, maximizing its potential and enhancing business efficiency. 9-Step Salesforce Data Migration PlanPreparing for a Salesforce data migration? Follow these nine essential steps for a seamless process: Need Help with Data Migration to Salesforce?We offer consulting services to guide you through the data migration process, from auditing data sources to executing the migration strategy. Tectonic is here to help. Top 5 Salesforce Data Migration ToolsHere’s a quick comparison of five Salesforce data migration tools to help you choose the right solution: For hassle-free data migration, reach out to Tectonic for a tailored plan that minimizes downtime and maximizes operational efficiency. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Agent Rivalry

AI Agent Rivalry

Microsoft and Salesforce’s AI Agent Rivalry Heats Up The battle for dominance in the AI agent space has escalated, with Salesforce CEO Marc Benioff intensifying his criticism of Microsoft’s AI solutions. Following remarks at Dreamforce 2024, Benioff took to X (formerly Twitter) to call out Microsoft for what he called “rebranding Copilot as ‘agents’ in panic mode.” The AI Agent rivalry winner may be determined not by flashy features but by delivering tangible, transformative outcomes for businesses navigating the complexities of AI adoption. AI Agent Rivalry. Benioff didn’t hold back, labeling Microsoft’s Copilot as “a flop”, citing issues like data leaks, inaccuracies, and requiring customers to build their own large language models (LLMs). In contrast, he touted Salesforce’s Agentforce as a solution that autonomously drives sales, service, marketing, analytics, and commerce without the complications he attributes to Microsoft’s offerings. Microsoft’s Copilot: A New UI for AI Microsoft recently unveiled new autonomous agent capabilities for Copilot Studio and Dynamics 365, positioning these agents as tools to enhance productivity across teams and functions. CEO Satya Nadella described Copilot as “the UI for AI” and emphasized its flexibility, allowing businesses to create, manage, and integrate agents seamlessly. Despite the fanfare, Benioff dismissed Copilot’s updates, likening it to “Clippy 2.0” and claiming it fails to deliver accuracy or transformational impact. Salesforce Expands Agentforce with Strategic Partnerships At Dreamforce 2024, Salesforce unveiled its Agentforce Partner Network, a global ecosystem featuring collaborators like AWS, Google Cloud, IBM, and Workday. The move aims to bolster the capabilities of Agentforce, Salesforce’s AI-driven platform that delivers tailored, autonomous business solutions. Agentforce allows businesses to deploy customizable agents without complex coding. With features like the Agent Builder, users can craft workflows and instructions in natural language, making the platform accessible to both technical and non-technical teams. Flexibility and Customization: Salesforce vs. Microsoft Both Salesforce and Microsoft emphasize AI’s transformative potential, but their approaches differ: Generative AI vs. Predictive AI Salesforce has doubled down on generative AI, with Einstein GPT producing personalized content using CRM data while also providing predictive analytics to forecast customer behavior and sales outcomes. Microsoft, on the other hand, combines generative and predictive AI across its ecosystem. Copilot not only generates content but also performs autonomous decision-making in Dynamics 365 and Azure, positioning itself as a comprehensive enterprise solution. The Rise of Multi-Agent AI Systems The competition between Microsoft and Salesforce reflects a broader trend in AI-driven automation. Companies like OpenAI are experimenting with frameworks like Swarm, which simplifies the creation of interconnected AI agents for tasks such as lead generation and marketing campaign development. Similarly, startups like DevRev are introducing conversational AI builders to design custom agents, offering enterprises up to 95% task accuracy without the need for coding. What Lies Ahead in the AI Agent Landscape? As Salesforce and Microsoft push the boundaries of AI integration, businesses are evaluating these tools for their flexibility, customization, and impact on operations. While Salesforce leads in CRM-focused AI, Microsoft’s integrated approach appeals to enterprises seeking cross-functional AI solutions. In the end, the winner may be determined not by flashy features but by delivering tangible, transformative outcomes for businesses navigating the complexities of AI adoption. AI Agent Rivalry. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Where LLMs Fall Short

LLM Economies

Throughout history, disruptive technologies have been the catalyst for major social and economic revolutions. The invention of the plow and irrigation systems 12,000 years ago sparked the Agricultural Revolution, while Johannes Gutenberg’s 15th-century printing press fueled the Protestant Reformation and helped propel Europe out of the Middle Ages into the Renaissance. In the 18th century, James Watt’s steam engine ushered in the Industrial Revolution. More recently, the internet has revolutionized communication, commerce, and information access, shrinking the world into a global village. Similarly, smartphones have transformed how people interact with their surroundings. Now, we stand at the dawn of the AI revolution. Large Language Models (LLMs) represent a monumental leap forward, with significant economic implications at both macro and micro levels. These models are reshaping global markets, driving new forms of currency, and creating a novel economic landscape. The reason LLMs are transforming industries and redefining economies is simple: they automate both routine and complex tasks that traditionally require human intelligence. They enhance decision-making processes, boost productivity, and facilitate cost reductions across various sectors. This enables organizations to allocate human resources toward more creative and strategic endeavors, resulting in the development of new products and services. From healthcare to finance to customer service, LLMs are creating new markets and driving AI-driven services like content generation and conversational assistants into the mainstream. To truly grasp the engine driving this new global economy, it’s essential to understand the inner workings of this disruptive technology. These posts will provide both a macro-level overview of the economic forces at play and a deep dive into the technical mechanics of LLMs, equipping you with a comprehensive understanding of the revolution happening now. Why Now? The Connection Between Language and Human Intelligence AI did not begin with ChatGPT’s arrival in November 2022. Many people were developing machine learning classification models in 1999, and the roots of AI go back even further. Artificial Intelligence was formally born in 1950, when Alan Turing—considered the father of theoretical computer science and famed for cracking the Nazi Enigma code during World War II—created the first formal definition of intelligence. This definition, known as the Turing Test, demonstrated the potential for machines to exhibit human-like intelligence through natural language conversations. The test involves a human evaluator who engages in conversations with both a human and a machine. If the evaluator cannot reliably distinguish between the two, the machine is considered to have passed the test. Remarkably, after 72 years of gradual AI development, ChatGPT simulated this very interaction, passing the Turing Test and igniting the current AI explosion. But why is language so closely tied to human intelligence, rather than, for example, vision? While 70% of our brain’s neurons are devoted to vision, OpenAI’s pioneering image generation model, DALL-E, did not trigger the same level of excitement as ChatGPT. The answer lies in the profound role language has played in human evolution. The Evolution of Language The development of language was the turning point in humanity’s rise to dominance on Earth. As Yuval Noah Harari points out in his book Sapiens: A Brief History of Humankind, it was the ability to gossip and discuss abstract concepts that set humans apart from other species. Complex communication, such as gossip, requires a shared, sophisticated language. Human language evolved from primitive cave signs to structured alphabets, which, along with grammar rules, created languages capable of expressing thousands of words. In today’s digital age, language has further evolved with the inclusion of emojis, and now with the advent of GenAI, tokens have become the latest cornerstone in this progression. These shifts highlight the extraordinary journey of human language, from simple symbols to intricate digital representations. In the next post, we will explore the intricacies of LLMs, focusing specifically on tokens. But before that, let’s delve into the economic forces shaping the LLM-driven world. The Forces Shaping the LLM Economy AI Giants in Competition Karl Marx and Friedrich Engels argued that those who control the means of production hold power. The tech giants of today understand that AI is the future means of production, and the race to dominate the LLM market is well underway. This competition is fierce, with industry leaders like OpenAI, Google, Microsoft, and Facebook battling for supremacy. New challengers such as Mistral (France), AI21 (Israel), and Elon Musk’s xAI and Anthropic are also entering the fray. The LLM industry is expanding exponentially, with billions of dollars of investment pouring in. For example, Anthropic has raised $4.5 billion from 43 investors, including major players like Amazon, Google, and Microsoft. The Scarcity of GPUs Just as Bitcoin mining requires vast computational resources, training LLMs demands immense computing power, driving a search for new energy sources. Microsoft’s recent investment in nuclear energy underscores this urgency. At the heart of LLM technology are Graphics Processing Units (GPUs), essential for powering deep neural networks. These GPUs have become scarce and expensive, adding to the competitive tension. Tokens: The New Currency of the LLM Economy Tokens are the currency driving the emerging AI economy. Just as money facilitates transactions in traditional markets, tokens are the foundation of LLM economics. But what exactly are tokens? Tokens are the basic units of text that LLMs process. They can be single characters, parts of words, or entire words. For example, the word “Oscar” might be split into two tokens, “os” and “car.” The performance of LLMs—quality, speed, and cost—hinges on how efficiently they generate these tokens. LLM providers price their services based on token usage, with different rates for input (prompt) and output (completion) tokens. As companies rely more on LLMs, especially for complex tasks like agentic applications, token usage will significantly impact operational costs. With fierce competition and the rise of open-source models like Llama-3.1, the cost of tokens is rapidly decreasing. For instance, OpenAI reduced its GPT-4 pricing by about 80% over the past year and a half. This trend enables companies to expand their portfolio of AI-powered products, further fueling the LLM economy. Context Windows: Expanding Capabilities

Read More
AI Agents as Tools of Trust

AI Agents as Tools of Trust

Salesforce Report Highlights AI Agents as Tools to Rebuild Consumer Trust For businesses of any size, the to-do list never ends. Monitoring customers, understanding their needs, and delivering products and services that align with their expectations are critical. Salesforce’s latest research, however, points to a troubling trend: consumer trust is at an all-time low. Yet, the report, State of the AI Connected Customer, also suggests that AI—particularly agentic AI—could help reverse this decline. Trust in Decline The key finding of the Salesforce report is stark: consumer trust in companies has taken a significant hit. Among 15,015 surveyed consumers, 72% say they trust companies less today than they did a year ago. Compounding this is the rapid advancement of AI; 60% of respondents believe that the rise of AI increases the importance of businesses being trustworthy. One major culprit behind eroding trust is the perceived mishandling of customer data. A staggering 65% of respondents feel companies are careless with data, adding to the skepticism. While high prices remain the top reason customers abandon brands, 43% pointed to poor customer service as a major deterrent. Can AI Agents Fill the Gap? The Salesforce report suggests that AI agents—when deployed transparently—could address many of the factors driving distrust and disengagement. Younger consumers, particularly Gen Z and millennials, appear more open to interacting with AI agents. Notable insights from the research include: However, trust is non-negotiable. Transparency is a critical factor for AI adoption: As Michael Affronti, SVP and General Manager of Salesforce Commerce Cloud, explains: “AI agents can help brands deliver consistent, personalized experiences for shoppers across every channel — deepening customer loyalty and ultimately driving more sales.” Building Trust Through Transparency The research underscores the potential for AI to transform customer interactions, but it also highlights the challenges. Transparency and accountability are essential for AI systems to inspire confidence and loyalty. Salesforce’s AI solutions are designed to prioritize transparency and foster reliable consumer experiences. Features such as clear agent identification and robust escalation paths are steps in the right direction. However, companies must double down on governance frameworks and safeguards to ensure AI agents handle data responsibly. Final Thoughts While the idea of using AI to rebuild consumer trust is promising, it’s not without its challenges. Establishing trust in AI itself remains a work in progress. Consumers expect companies to prioritize not only innovation but also ethics, security, and accountability. The Salesforce report demonstrates that younger consumers are already embracing AI as a way to address today’s service expectations. For Salesforce and other companies leveraging agentic AI, the key to success will lie in balancing cutting-edge technology with meaningful protections for customer data and experiences. The future of AI-driven customer engagement isn’t just about meeting expectations—it’s about exceeding them in a way that inspires confidence and loyalty. With the right approach, AI agents could be a vital tool for restoring consumer trust in an era where skepticism runs high. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Commerce Cloud and Agentic AI

Gen X and Millennials Lead in Embracing Agentic AI

Gen X and Millennials Lead in Embracing Agentic AI: Salesforce Report Generation X and millennials are showing greater openness to adopting agentic artificial intelligence (AI), according to Salesforce’s State of the AI Connected Customer report. Agentic AI refers to autonomous agents capable of independently making decisions and performing tasks, learning and adapting from experiences without direct human supervision. This technology is making significant inroads across industries, with applications ranging from personalized recommendations and inventory management in retail to supply chain optimization in logistics. It also finds use in healthcare, finance, telecom, IT, and customer service. Generational Differences in AI Adoption The report highlights that millennials (57%) and Gen Xers (58%) in India are more inclined to embrace AI agents for faster and more proactive customer service compared to Gen Z (51%) and Baby Boomers (42%). These autonomous agents enhance customer experiences by delivering personalized and relevant content, which resonates more with the tech-savvy Gen X and millennial demographics. Who Are These Generations? Building Trust in the AI Era The report reveals a sharp decline in consumer trust, with trust levels at their lowest in eight years. Over half of the respondents feel companies are less trustworthy than a year ago and believe businesses mishandle customer data. Arun Parameswaran, SVP & Managing Director, Sales and Distribution at Salesforce India, emphasized the critical role of trust in AI strategies: “As we enter a new era of intelligent customer engagement, brands that prioritize trust in their AI strategies will be best positioned to deliver impactful, lasting connections.” Transparency, according to the report, is key to restoring consumer confidence in the AI-driven era. Companies that adopt responsible AI practices, particularly in the design and deployment of agentic AI, can foster stronger customer relationships. Global Perspective The findings are based on a survey of 15,015 consumers across India, Australia, Brazil, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, Netherlands, Norway, Singapore, Spain, Sweden, the UK, and the US. As businesses increasingly integrate agentic AI into their operations, understanding generational attitudes and prioritizing ethical AI practices will be essential for fostering trust and delivering exceptional customer experiences. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Customer Service Week

Customer Service Week

Engage Your Customer Service Team All Year — With Appreciation Recognizing your customer service team during National Customer Service Week (the first full week of October) is a great opportunity to show appreciation. But why limit it to one week, or to simple gestures like pastries or catered lunches? Your team works hard all year long! Here are four ways to show your customer service reps that you value their dedication and well-being every day. Why Customer Service Week Matters Customer Service Week is ainternational event dedicated to recognizing the essential role customer service reps play in delivering excellent customer experiences. With growing demands on reps, including handling more products and increasingly complex cases, it’s important to show appreciation and support. Our research shows that 69% of service leaders say rep attrition is a significant challenge, and more than half of reps experience burnout. Investing in your team can reduce turnover, prevent burnout, and improve overall customer satisfaction. Everyone deserves to be recognized for the contributions. Customer Service Week, Administrative Assistants Day, Best Boss Day — they all offer opportunities to focus on the good someone is doing in your organization and provide praise beyond a comment in a review or an attaboy. Here are four ways to make sure your reps feel supported during Customer Service Week—and all year long: 1. Foster Community Involvement Customer service reps often work around the clock to solve problems and assist customers. Connecting them with a supportive community can make all the difference, especially as AI continues to transform the customer service landscape. Encourage your reps to join Salesforce’s Serviceblazer Community, where they can gain new skills, connect with industry peers, and grow their careers. By fostering these connections, you show that you’re invested in their professional growth. As Serviceblazer Shonnah Hughes, VP at Salesforce, notes: “Your community helps you stay updated with the latest technology and enhances your skills, leading to career opportunities and personal growth.” Sean Lewis, principal solution consultant for Vicasso, shares that creating a dedicated Slack channel for best practices has improved customer service issue resolution and created a culture of gratitude. 2. Offer Professional Development Opportunities Invest in your team’s future by providing paid learning opportunities. Platforms like Salesforce’s Trailhead offer self-paced learning on a variety of topics, from communication skills to AI in customer service. Additionally, consider sponsoring team members for training courses, seminars, or workshops. This not only builds their skill sets but also shows you’re invested in their long-term success within the organization. You don’t have to send everyone to Dreamforce. But some of the smaller events might require less travel and more learning. If there isn’t a customer service Salesforce focused Meetup locally, sponsor one. Encourage networking. This might be where your next great employee is found. 3. Promote Skills Exchange Sessions Encourage skill-sharing among team members to build camaraderie and promote peer learning. Regularly schedule sessions where team members can teach one another valuable skills, such as how to leverage AI for writing customer responses or best practices for resolving complex cases. These sessions help create a collaborative work environment and enable the team to continuously improve. Record the sessions and add them to your Knowledge Base. Encourage staff to learn new skills to share. 4. Prioritize Health and Wellness Initiatives Supporting your team’s physical and mental health is key to maintaining productivity and morale. Consider introducing initiatives like fitness challenges, yoga sessions, or mental health workshops to reduce burnout and promote well-being. Offering access to wellness resources, gym memberships, or wellness stipends can also demonstrate your commitment to their overall health. Not only does the team appreciate these gestures, but helps them feel better all year long. 🔔🔔 Follow us on LinkedIn 🔔🔔 Ready to Put These Ideas into Action? A valued team is a highly motivated team. By implementing these four strategies—community involvement, professional development, skills exchanges, and wellness initiatives—you can show your customer service reps how much they mean to your organization. And the best part? You can engage and support them not just during Customer Service Week, but every day of the year—whether or not there are donuts involved. Salesforce provides a wide array of tools to help you with these four strategies. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Won't Hurt Salesforce

AI Won’t Hurt Salesforce

Marc Benioff Dismisses AI Threats, Sets Sights on a Billion AI Agents in One Year Salesforce CEO Marc Benioff has no doubts about the transformative potential of AI for enterprise software, particularly Salesforce itself. At the core of his vision are AI agents—autonomous software bots designed to handle routine tasks, freeing up human workers to focus on more strategic priorities. “What if your workforce had no limits? That’s a question we couldn’t even ask over the past 25 years of Salesforce—or the 45 years I’ve been in software,” Benioff said during an appearance on TechCrunch’s Equity podcast. The Billion-Agent Goal Benioff revealed that Salesforce’s recently launched Agentforce platform is already being adopted by “hundreds of customers” and aims to deploy a billion AI agents within a year. These agents are designed to handle tasks across industries—from enhancing customer experiences at retail brands like Gucci to assisting patients with follow-ups in healthcare. To illustrate, Benioff shared his experience with Disney’s virtual Private Tour Guides. “The AI agent analyzed park flow, ride history, and preferences, then guided me to attractions I hadn’t visited before,” he explained. Competition with Microsoft and the AI Landscape While Benioff is bullish on AI, he hasn’t hesitated to criticize competitors—particularly Microsoft. When Microsoft unveiled its new autonomous agents for Dynamics 365 in October, Benioff dismissed them as uninspired. “Copilot is the new Clippy,” he quipped, referencing Microsoft’s infamous virtual assistant from the 1990s. Benioff also cited Gartner research highlighting data security issues and administrative flaws in Microsoft’s AI tools, adding, “Copilot has disappointed so many customers. It’s not transforming companies.” However, industry skeptics argue that the real challenge to Salesforce isn’t Microsoft but the wave of AI-powered startups disrupting traditional enterprise software. With tools like OpenAI’s ChatGPT and Klarna’s in-house AI assistant “Kiki,” companies are starting to explore GenAI solutions that can replace legacy platforms like Salesforce altogether. For example, Klarna recently announced it was moving away from Salesforce and Workday, favoring GenAI tools that enable seamless, conversational interfaces and faster data access. Why Salesforce Is Positioned to Win Despite the noise, Benioff remains confident that Salesforce’s extensive data infrastructure gives it a significant edge. “We manage 230 petabytes of customer data with robust security and sharing models. That’s what allows AI to thrive in our ecosystem,” he said. While companies may question how other platforms like OpenAI handle data, Salesforce offers an integrated approach, reducing the need for complex data migrations to other clouds, such as Microsoft Azure. Salesforce’s Own Use of AI Benioff also highlighted Salesforce’s internal adoption of Agentforce, using AI agents in its customer service operations, sales processes, and help centers. “If you’re authenticated on help.salesforce.com, you’re already interacting with our agent,” he noted. AI Startups: Threat or Opportunity? As for concerns about AI startups overtaking Salesforce, Benioff sees them as acquisition opportunities rather than existential threats. “We’ve made over 60 acquisitions, many of them startups,” he said. He pointed to Agentforce itself, which was built using technology from Airkit.ai, a startup founded by a former Salesforce employee. Salesforce Ventures initially invested in Airkit.ai before acquiring and integrating it into its platform. The Path Forward Benioff is resolute in his belief that AI won’t hurt Salesforce—instead, it will revolutionize how businesses operate. While skeptics warn of a seismic shift in enterprise software, Benioff’s strategy is clear: lean into AI, leverage data, and stay agile through innovation and acquisitions. “We’re just getting started,” he concluded, reiterating his vision for a future where AI agents expand the possibilities of work and customer experience like never before. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
Pioneering AI-Driven Customer Engagement

Pioneering AI-Driven Customer Engagement

With Salesforce at the forefront of the AI revolution, Agentforce, introduced at Dreamforce, represents the next phase in customer service automation. It integrates AI and human collaboration to automate repetitive tasks, freeing human talent for more strategic activities, ultimately improving customer satisfaction. Tallapragada emphasized how this AI-powered tool enables businesses, particularly in the Middle East, to scale operations and enhance efficiency, aligning with the region’s appetite for growth and innovation.

Read More
gettectonic.com