Enterprise Archives - gettectonic.com
Agentforce Redefines Generative AI

The Rise of Agentic AI: Balancing Innovation and Trust

Agentic AI is transforming industries, and Salesforce’s Agentforce is proving to be a catalyst for both economic growth and workforce empowerment. For companies like Wiley, Agentforce has increased case resolutions by 40%, surpassing the performance of its previous chatbot and allowing employees to focus on more complex cases. However, a new Salesforce white paper emphasizes that simply deploying AI agents isn’t enough to drive productivity and build trust—they must operate within well-defined frameworks that ensure responsible AI adoption. “AI has the potential to enhance trust, efficiency, and effectiveness in our institutions,” said Eric Loeb, EVP of Global Government Affairs at Salesforce. “Salesforce research shows 90% of constituents are open to using AI agents for government services, drawn by benefits like 24/7 access, faster response times, and streamlined processes.” Key Considerations for Policymakers in the Age of AI Agents To strike a balance between risk and opportunity, the Salesforce white paper outlines critical areas policymakers must address: 🔹 Human-AI Collaboration – Employees must develop new skills to configure, manage, and oversee AI agents, ensuring they can be easily programmed and adapted for various tasks. 🔹 Reliability & Guardrails – AI agents must be engineered with fail-safes that enable clear handoffs to human workers and mechanisms to detect and correct AI hallucinations. 🔹 Cross-Domain Fluency – AI must be designed to interpret and act on data from diverse sources, making seamless enterprise-wide integrations essential. 🔹 Transparency & Explainability – Users must know when they’re interacting with AI, and regulators need visibility into how decisions are made to ensure compliance and accountability. 🔹 Data Governance & Privacy – AI agents often require access to sensitive information. Strong privacy and security safeguards are crucial to maintaining trust. 🔹 Security & AI Safety – AI systems must be resilient against adversarial attacks that attempt to manipulate or deceive them into producing inaccurate outputs. 🔹 Ethical AI Use – Companies should establish clear ethical guidelines to govern AI behavior, ensuring responsible deployment and human-AI collaboration. 🔹 Agent-to-Agent Interactions – Standardized protocols and security measures must be in place to ensure controlled, predictable AI behavior and auditability of decisions. Building an Agent-Ready Ecosystem While AI agents represent the next wave of enterprise innovation, policy frameworks must evolve to foster responsible adoption. Policymakers must look beyond AI development and equip the workforce with the skills needed to work alongside these digital assistants. “It’s no longer a question of whether AI agents should be part of the workforce—but how to optimize human and digital labor to achieve the best outcomes,” said Loeb. “Governments must implement policies that ensure AI agents are deployed responsibly, creating more meaningful and productive work environments.” Next Steps Salesforce’s white paper provides a roadmap for policymakers navigating the agentic AI revolution. By focusing on risk-based approaches, transparency, and robust safety measures, businesses and governments alike can unlock the full potential of AI agents—while ensuring trust, accountability, and innovation. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
agentforce digital workforce

How Agentforce Works

Salesforce Agentforce: Everything You Need to Know Salesforce Agentforce represents a paradigm shift from generative AI to agentic AI—a new class of AI capable of autonomous action. Since its launch at Dreamforce in September 2024, Agentforce has redefined the conversation around AI, customer service, and experience management. To meet skyrocketing demand, Salesforce announced plans to hire more than 1,000 employees shortly after the launch. What is Salesforce Agentforce? Agentforce is a next-generation platform layer within the Salesforce ecosystem. While its bots leverage generative AI capabilities, they differ significantly from platforms like ChatGPT or Google Gemini. Agentforce bots are designed not just to generate responses but to act autonomously within predefined organizational guardrails. Unlike traditional chatbots, which follow scripted patterns, Agentforce AI agents are trained on proprietary data, enabling flexible and contextually accurate responses. They also integrate with Salesforce’s Data Cloud, enhancing their capacity to access and utilize customer data effectively. Agentforce combines three core tools—Agent Builder, Model Builder, and Prompt Builder—allowing businesses to create customized bots using low-code tools. Key Features of Agentforce The platform offers ready-to-deploy AI agents tailored for various industries, including: Agentforce officially became available on October 25, 2024, with pricing starting at $2 per conversation, and volume discounts offered for enterprise customers. Salesforce also launched the Agentforce Partner Network, enabling third-party integrations and custom agent designs for expanded functionality. How Agentforce Works Salesforce designed Agentforce for users without deep technical expertise in AI. As CEO Marc Benioff said, “This is AI for the rest of us.” The platform is powered by the upgraded Atlas Reasoning Engine, a component of Salesforce Einstein AI, which mimics human reasoning and planning. Like self-driving cars, Agentforce interprets real-time data to adapt its actions and operates autonomously within its established parameters. Enhanced Atlas Reasoning Engine In December 2024, Salesforce enhanced the Atlas Reasoning Engine with retrieval-augmented generation (RAG) and advanced reasoning capabilities. These upgrades allow agents to: Seamless Integrations with Salesforce Tools Agentforce is deeply integrated with Salesforce’s ecosystem: Key Developments Agentforce Testing Center Launched in December 2024, the Testing Center allows businesses to test agents before deployment, ensuring they are accurate, fast, and aligned with organizational goals. Skill and Integration Library Salesforce introduced a pre-built library for CRM, Slack, Tableau, and MuleSoft integrations, simplifying agent customization. Examples include: Industry-Specific Expansion Agentforce for Retail Announced at the NRF conference in January 2025, this solution offers pre-built skills tailored to retail, such as: Additionally, Salesforce unveiled Retail Cloud with Modern POS, unifying online and offline inventory data. Notable Agentforce Customers Looking Ahead Marc Benioff calls Agentforce “the third wave of AI”, advancing beyond copilots into a new era of autonomous, low-hallucination intelligent agents. With its robust capabilities, Agentforce is positioned to transform how businesses interact with customers, automate workflows, and drive success. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Decision Domain Management

Roger’s first week in the office felt like a wilder than 8 second ride on a raging rodeo bull. Armed with top-notch academic achievements, he hoped to breeze through operational routines and impress his new managers. What he didn’t expect was to land in a whirlwind of half-documented processes, half-baked ideas, and near-constant firefighting. While the organization had detailed SOPs for simple, routine tasks—approving invoices, updating customer records, and shipping standard orders—Roger quickly realized that behind the structured facade, there was a deeper level of uncertainty. Every day, he heard colleagues discuss “strategic pivots” or “risky product bets.” There were whispers about AI-based initiatives that promised to automate entire workflows. Yet, when the conversation shifted to major decisions—like selecting the right AI use cases—leaders often seemed to rely more on intuition than any structured methodology. One afternoon, Roger was invited to a cross-functional meeting about the company’s AI roadmap. Expecting an opportunity to showcase his knowledge, he instead found himself in a room filled with brilliant minds pulling in different directions. Some argued that AI should focus on automating repetitive tasks aligned with existing SOPs. Others insisted that AI’s real value lay in predictive modeling—helping forecast new market opportunities. The debate went in circles, with no consensus on where or how to allocate AI resources. After an hour of heated discussion, the group dispersed, each manager still convinced of the merit of their own perspective but no closer to a resolution. That evening, as Roger stood near the coffee machine, he muttered to himself, “We have SOPs for simple tasks, but nothing for big decisions. How do we even begin selecting which AI models or agents to develop first?” His frustration led him to a conversation with a coworker who had been with the company for years. “We’re missing something fundamental here,” Roger said. “We’re rushing to onboard AI agents that can mimic our SOPs—like some large language model trained to follow rote instructions—but that’s not where the real value lies. We don’t even have a framework for weighing one AI initiative against another. Everything feels like guesswork.” His coworker shrugged. “That’s just how it’s always been. The big decisions happen behind closed doors, mostly based on experience and intuition. If you’re waiting for a blueprint, you might be waiting a long time.” That was Roger’s ;ight bulb moment. Despite all his academic training, he realized the organization lacked a structured approach to high-level decision-making. Sure, they had polished SOPs for operational tasks, but when it came to determining which AI initiatives to prioritize, there were no formal criteria, classifications, or scoring mechanisms in place. Frustrated but determined, Roger decided he needed answers. Two days later, he approached a coworker known for their deep understanding of business strategy and technology. After a quick greeting, he outlined his concerns—the disorganized AI roadmap meeting, the disconnect between SOP-driven automation and strategic AI modeling, and his growing suspicion that even senior leaders were making decisions without a clear framework. His coworker listened, then gestured for him to take a seat. “Take a breath,” they said. “You’re not the first to notice this gap. Let me explain what’s really missing.” Why SOPs Aren’t Enough The coworker acknowledged that the organization was strong in SOPs. “We’re great at detailing exactly how to handle repetitive, rules-based tasks—like verifying invoices or updating inventory. In those areas, we can plug in AI agents pretty easily. They follow a well-defined script and execute tasks efficiently. But that’s just the tip of the iceberg.” They leaned forward and continued, “Where we struggle, as you’ve discovered, is in decision-making at deeper levels—strategic decisions like which new product lines to pursue, or tactical decisions like selecting the right vendor partnerships. There’s no documented methodology for these. It’s all in people’s heads.” Roger tilted his head, intrigued. “So how do we fix something as basic but great impact as that?” “That’s where Decision Domain Management comes in,” he explained. In the context of data governance and management, data domains are the high-level blocks that data professionals use to define master data. Simply put, data domains help data teams logically group data that is of interest to their business or stakeholders. “Think of it as the equivalent of SOPs—but for decision-making. Instead of prescribing exact steps for routine tasks, it helps classify decisions, assess their importance, and determine whether AI can support them—and if so, in what capacity.” They broke it down further. The Decision Types “First, we categorize decisions into three broad types: Once we correctly classify a decision, we get a clearer picture of how critical it is and whether it requires an AI agent (good at routine tasks) or an AI model (good at predictive and analytical tasks).” The Cynefin Framework The coworker then introduced the Cynefin Framework, explaining how it helps categorize decision contexts: By combining Decision Types with the Cynefin Framework, organizations can determine exactly where AI projects will be most beneficial. Putting It into Practice Seeing the spark of understanding in Roger’s eyes, the coworker provided some real-world examples: ✅ AI agents are ideal for simple SOP-based tasks like invoice validation or shipping notifications. ✅ AI models can support complicated decisions, like vendor negotiations, by analyzing performance metrics. ✅ Strategic AI modeling can help navigate complex decisions, such as predicting new market trends, but human judgment is still required. “Once we classify decisions,” the coworker continued, “we can score and prioritize AI investments based on impact and feasibility. Instead of throwing AI at random problems, we make informed choices.” The Lightbulb Moment Roger exhaled, visibly relieved. “So the problem isn’t just that we lack a single best AI approach—it’s that we don’t have a shared structure for decision-making in the first place,” he said. “If we build that structure, we’ll know which AI investments matter most, and we won’t keep debating in circles.” The coworker nodded. “Exactly. Decision Domain Management is the missing blueprint. We can’t expect AI to handle what even humans haven’t clearly defined. By categorizing

Read More
AI evolves with tools like Agentforce and Atlas

Salesforce Atlas

Salesforce Atlas: The Brainpower Behind AI-Driven Transformation A New Era of AI for Enterprise AI is reshaping industries at an unprecedented pace, and agentic AI—AI that can think, plan, and act autonomously—is at the forefront of this revolution. Salesforce is leading the charge with Agentforce, a low-code platform that allows businesses to build, refine, and deploy autonomous AI agents across multiple business functions. At the core of this innovation is Salesforce Atlas, the reasoning engine that empowers Agentforce to tackle complex decision-making tasks just like a human. But Atlas goes further—it continuously learns, adapts, and evolves, setting a new standard for AI-driven enterprises. Let’s explore how Atlas works, its capabilities, and why it’s a game-changer for businesses. Salesforce Atlas: The Reasoning Engine Powering Agentforce Atlas is the intelligent decision-making engine that powers Agentforce’s AI agents. Rather than simply following predefined rules, Atlas evaluates data, refines its approach, and continuously learns from outcomes. When an AI agent encounters a decision point, Atlas asks: ➡️ Do I have enough data to ensure accuracy?✔ If yes, it proceeds with a decision.❌ If no, it seeks additional data or escalates the issue. This iterative learning process ensures that AI agents become more reliable, context-aware, and autonomous over time. Salesforce CEO Marc Benioff teased the potential of Atlas, revealing that: 📊 “We are seeing 90-95% resolution on all service and sales issues with the new Atlas.” That’s a staggering success rate, demonstrating how AI-driven reasoning can transform enterprise efficiency and customer engagement. How Salesforce Atlas Works: The “Flywheel” Process Atlas operates using a structured flywheel process that enables self-improvement and adaptability. Here’s how it works: 1️⃣ Data Retrieval – Atlas pulls structured and unstructured data from the Salesforce Data Cloud.2️⃣ Evaluation – It analyzes the data, generates a plan of action, and assesses whether the plan will drive the desired outcome.3️⃣ Refinement – If the plan isn’t strong enough, Atlas loops back, refines its approach, and iterates until it’s confident in its decision. This cycle repeats continuously, ensuring AI agents deliver accurate, data-driven outcomes that align with business goals. Once a task is completed, Atlas learns from the results, refining its approach to become even smarter over time. The Core Capabilities of Salesforce Atlas Atlas stands out because of its advanced reasoning, adaptive learning, and built-in safeguards—all designed to deliver trustworthy, autonomous AI experiences. 1. Advanced Reasoning & Decision-Making Atlas doesn’t just execute tasks; it thinks critically, determining the best way to approach each challenge. Unlike traditional AI models that follow rigid scripts, Atlas: 🔍 Analyzes real-time data to determine the most effective course of action.📊 Refines its decisions dynamically based on live feedback.🌍 Adapts to changing circumstances to optimize outcomes. At Dreamforce 2024, Marc Benioff demonstrated Atlas’s power by showcasing how it could optimize theme park experiences in real time, analyzing: 🎢 Ride availability👥 Guest preferences🚶 Park flow patterns This real-time decision-making showcases the game-changing potential of agentic AI. 2. Advanced Data Retrieval Atlas leverages Retrieval-Augmented Generation (RAG) to pull highly relevant, verified data from multiple sources. This ensures: ✔ More accurate responses✔ Minimized AI hallucinations✔ Reliable, data-driven insights For example, Saks Fifth Avenue uses Atlas to personalize shopping recommendations for millions of customers—tailoring experiences with precision. 3. Built-in Guardrails for Security & Compliance Salesforce recognizes the importance of AI governance, and Atlas includes robust safeguards to ensure responsible AI usage. 🔐 Ethical AI protocols – Ensures compliance with evolving regulations.🚨 Escalation capabilities – AI knows when to seek human intervention for complex issues.🌍 Hyperforce security – Provides enterprise-grade privacy and security standards. These protections ensure Atlas operates securely, responsibly, and at scale across global enterprises. 4. Reinforcement Learning & Continuous Improvement Atlas doesn’t just process data—it learns from outcomes. 🔄 Refines decisions based on real-world results📈 Optimizes performance over time⚡ Becomes increasingly efficient and tailored to business needs Whether it’s increasing sales conversions, resolving service issues, or optimizing workflows, Atlas ensures AI agents grow smarter with every interaction. Why Salesforce Atlas is a Game-Changer Salesforce Atlas isn’t just another AI tool—it’s the brain behind Salesforce’s next-generation AI ecosystem. With Atlas, businesses can: ✅ Automate complex tasks with AI-driven decision-making.✅ Deliver hyper-personalized customer experiences with confidence.✅ Scale AI-powered workflows across sales, service, and operations.✅ Ensure compliance and trust with built-in governance measures.✅ Adapt AI capabilities to meet evolving business needs. Marc Benioff envisions Atlas as the core of a future where AI and humans collaborate to drive innovation and efficiency. By combining advanced reasoning, dynamic adaptability, and enterprise security, Atlas empowers organizations to work smarter, faster, and more effectively—unlocking the full potential of agentic AI. The future of AI-driven enterprise has arrived. With Salesforce Atlas, businesses can build AI agents that don’t just follow instructions—they think, learn, and evolve. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce agentforce ai powered agentic agents

Agentforce 2.0

Salesforce, the leading CRM provider, is set to launch Agentforce 2.0 in February 2025—an AI-powered toolset designed as a “digital labor platform for building a limitless workforce for the enterprise.” Agentforce 2.0 is a comprehensive AI system that enhances teams with autonomous AI agents embedded in everyday workflows. Among its key offerings are AI-driven agents for Sales Development and Sales Coaching, with pricing starting at $2 per conversation. With this release, Salesforce introduces a library of pre-built skills and workflow integrations, enabling rapid customization and seamless deployment within Slack. Marc Benioff, Chair and CEO of Salesforce, stated, “We’re seamlessly bringing together AI, data, apps, and automation with humans to reshape how work gets done. Agentforce 2.0 cements our position as the leader in digital labor solutions, allowing any company to build a limitless workforce that can truly transform their business.” Agentforce 2.0 includes pre-built AI skills across CRM, Slack, Tableau, and partner-developed integrations via the AppExchange. Customers can further extend Agentforce’s capabilities using MuleSoft, enabling low-code workflows that integrate with any system. The release also introduces an enhanced Agent Builder, which interprets natural language instructions—such as “Onboard New Product Managers”—to automatically generate new AI agents. These agents combine pre-made skills with custom logic built directly in Salesforce, offering unmatched flexibility and efficiency. Additionally, Agentforce 2.0 features Tableau Skills for advanced analytics and insights, further empowering businesses to harness AI-driven decision-making. Like1 Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Market Heat

AI Market Heat

Alibaba Feels the Heat as DeepSeek Shakes Up AI Market Chinese tech giant Alibaba is under pressure following the release of an AI model by Chinese startup DeepSeek that has sparked a major reaction in the West. DeepSeek claims to have trained its model—comparable to advanced Western AI—at a fraction of the cost and with significantly fewer AI chips. In response, Alibaba launched Qwen 2.5-Max, its latest AI language model, on Tuesday—just one day before the Lunar New Year, when much of China’s economy typically slows down for a 15-day holiday. A Closer Look at Qwen 2.5-Max Qwen 2.5-Max is a Mixture of Experts (MoE) model trained on 20 trillion tokens. It has undergone supervised fine-tuning and reinforcement learning from human feedback to enhance its capabilities. MoE models function by using multiple specialized “minds,” each focused on a particular domain. When a query is received, the model dynamically routes it to the most relevant expert, improving efficiency. For instance, a coding-related question would be processed by the model’s coding expert. This MoE approach reduces computational requirements, making training more cost-effective and faster. Other AI vendors, such as France-based Mistral AI, have also embraced this technique. DeepSeek’s Disruptive Impact While Qwen 2.5-Max is not a direct competitor to DeepSeek’s R1 model—the release of which triggered a global selloff in AI stocks—it is similar to DeepSeek-V3, another MoE-based model launched earlier this month. Alibaba’s swift release underscores the competitive threat posed by DeepSeek. As the world’s fourth-largest public cloud vendor, Alibaba, along with other Chinese tech giants, has been forced to respond aggressively. In the wake of DeepSeek R1’s debut, ByteDance—the owner of TikTok—also rushed to update its AI offerings. DeepSeek has already disrupted the AI market by significantly undercutting costs. In 2023, the startup introduced V2 at just 1 yuan ($0.14) per million tokens, prompting a price war. By comparison, OpenAI’s GPT-4 starts at $10 per million tokens—a staggering difference. The timing of Alibaba and ByteDance’s latest releases suggests that DeepSeek has accelerated product development cycles across the industry, forcing competitors to move faster than planned. “Alibaba’s cloud unit has been rapidly advancing its AI technology, but the pressure from DeepSeek’s rise is immense,” said Lisa Martin, an analyst at Futurum Group. A Shifting AI Landscape DeepSeek’s rapid growth reflects a broader shift in the AI market—one driven by leaner, more powerful models that challenge conventional approaches. “The drive to build more efficient models continues,” said Gartner analyst Arun Chandrasekaran. “We’re seeing significant innovation in algorithm design and software optimization, allowing AI to run on constrained infrastructure while being more cost-competitive.” This evolution is not happening in isolation. “AI companies are learning from one another, continuously reverse-engineering techniques to create better, cheaper, and more efficient models,” Chandrasekaran added. The AI industry’s perception of cost and scalability has fundamentally changed. Sam Altman, CEO of OpenAI, previously estimated that training GPT-4 cost over $100 million—but DeepSeek claims it built R1 for just $6 million. “We’ve spent years refining how transformers function, and the efficiency gains we’re seeing now are the result,” said Omdia analyst Bradley Shimmin. “These advances challenge the idea that massive computing power is required to develop state-of-the-art AI.” Competition and Data Controversies DeepSeek’s success showcases the increasing speed at which AI innovation is happening. Its distillation technique, which trains smaller models using insights from larger ones, has allowed it to create powerful AI while keeping costs low. However, OpenAI and Microsoft are now investigating whether DeepSeek improperly used their models’ data to train its own AI—a claim that, if true, could escalate into a major dispute. Ironically, OpenAI itself has faced similar accusations, leading some enterprises to prefer using its models through Microsoft Azure, which offers additional compliance safeguards. “The future of AI development will require stronger security layers,” Shimmin noted. “Enterprises need assurances that using models like Qwen 2.5 or DeepSeek R1 won’t expose their data.” For businesses evaluating AI models, licensing terms matter. Alibaba’s Qwen 2.5 series operates under an Apache 2.0 license, while DeepSeek uses an MIT license—both highly permissive, allowing companies to scrutinize the underlying code and ensure compliance. “These licenses give businesses transparency,” Shimmin explained. “You can vet the code itself, not just the weights, to mitigate privacy and security risks.” The Road Ahead The AI arms race between DeepSeek, Alibaba, OpenAI, and other players is just beginning. As vendors push the limits of efficiency and affordability, competition will likely drive further breakthroughs—and potentially reshape the AI landscape faster than anyone anticipated. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentforce for Retail

Agentforce for Retail

Salesforce Introduces Agentforce for Retail: A Sector-Specific Skills Library for AI Innovation Salesforce has unveiled Agentforce for Retail, an industry-specific skills library designed to empower retailers to develop AI agents tailored to their unique business needs. This release provides tools for retailers to enhance customer service, assist store associates, and engage customers in innovative ways. For example, AI agents can now automate and streamline processes like order management, guided shopping, and appointment scheduling. While Salesforce had previously launched 100 preconfigured, industry-specific AI agents for the core Agentforce platform, this new retail-focused release represents a shift toward providing specialized tools that enable retailers to build AI agents with greater precision and flexibility. Driving Seamless, Unified Retail Experiences Nitin Mangtani, SVP & GM of Retail at Salesforce, described the vision behind Agentforce for Retail: “Salesforce is helping retailers deliver seamless, unified shopping experiences across both the physical and digital realms of retail, driving productivity advancements and business growth across their entire enterprise.” This move aligns with Salesforce’s broader commitment to delivering sector-specific AI innovations, expanding the Agentforce offering into targeted solutions that meet the distinct demands of industries like retail. Agentforce for Retail: Core Capabilities Commerce Skills for Order Management These skills empower retailers to offer self-service order support, helping reduce costs while boosting customer loyalty. Customers can: Commerce Skills for Guided Shopping Using natural language, customers can receive personalized product recommendations based on behavior, inventory, and operational data. They can also: Field Service Skills for Appointment Scheduling Service representatives can use AI-powered tools to streamline the scheduling of deliveries, installations, or consultations. Real-time availability updates improve efficiency and enhance customer satisfaction. Marketing Skills for Loyalty Promotion Creation Marketers can use conversational prompts informed by shopper data, point-of-sale (POS) insights, and segmentation to design loyalty campaigns. These tools also assist in creating personalized email content and subject lines to drive higher engagement. Retail Cloud with Modern POS: A Complementary Innovation In addition to Agentforce for Retail, Salesforce announced the Retail Cloud with Modern POS, a cloud-based point-of-sale solution designed to unify online and offline shopping experiences. Key features include: The POS system also incorporates AI capabilities such as: Shoppers benefit from flexible fulfillment options, including buy-online-pickup-in-store (BOPIS) and omni-exchanges. Each cart item can have unique fulfillment methods, optimizing supply chain costs while enhancing convenience. Mangtani noted, “Together, AI-fueled digital labor and a modern POS can unlock a new scale of operational capacity for retailers.” The Evolution of Agentforce: A Platform for Digital Labor In late 2024, Salesforce launched Agentforce 2.0, branding it as “The Digital Labor Platform.” This expanded version introduced enhanced capabilities aimed at helping businesses streamline operations and adopt AI-driven automation on a larger scale. Agentforce for Retail builds on this foundation, offering retailers the tools to reimagine customer engagement, boost efficiency, and drive business growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
computer hackers in a genai desert

How Hackers Exploit GenAI

Hackers are increasingly leveraging generative AI (GenAI) to execute sophisticated cyberattacks, with real-world incidents highlighting its growing role in cybercrime. In early 2024, fraudsters used a deepfake of a multinational firm’s CFO to trick a finance employee into transferring $25 million—a stark example of how GenAI is reshaping cyber threats. Experts warn this is just the beginning. Here’s how cybercriminals are using GenAI to their advantage: 1. Crafting Advanced Phishing & Social Engineering Attacks GenAI-powered tools like ChatGPT enable hackers to generate professional-grade phishing emails that closely mimic corporate communications. These emails, now nearly flawless in grammar and formatting, are far more convincing to targets. Additionally, GenAI can: 2. Writing & Enhancing Malicious Code Just as developers use GenAI to accelerate coding, cybercriminals use it to: This automation fuels a rise in zero-day attacks, where vulnerabilities are exploited before developers can patch them. 3. Identifying Vulnerabilities at Scale GenAI accelerates the discovery of security weaknesses by: With GenAI, cybercriminals can scale and refine their tactics faster than ever. 4. Automating Target Research & Attack Planning Hackers use GenAI to: While mainstream AI tools have built-in safeguards, threat actors find ways to bypass them, using alternative AI models or dark web resources. 5. Lowering the Barrier to Cybercrime GenAI democratizes cyberattacks by: This increased accessibility means more people—beyond seasoned cybercriminals—can launch effective cyberattacks. The Hidden Risk: AI-Powered Coding in Enterprises The security risk of GenAI isn’t limited to adversarial use. Businesses adopting AI-powered coding tools may unintentionally introduce vulnerabilities into their systems. Joseph Nwankpa, director of cybersecurity initiatives at Miami University’s Farmer School of Business, warns: The Takeaway While GenAI offers groundbreaking advancements, it also amplifies cyber threats. Organizations must remain vigilant—investing in AI security measures, strengthening human oversight, and educating employees to counter AI-powered attacks. The race between AI-driven innovation and cybercrime is just getting started. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Foundations

Salesforce Foundations

We are excited that Agentforce Service Agents are now live! Agentforce Service Agent is the autonomous conversational AI assistant to help your customers with their service and support needs. What does this mean for Foundations Customers?Salesforce Foundations is required for all customers in order to try or buy Agentforce. Additionally, customers who have Foundations can try Agentforce Agents for free with a limited number of credits to test a use case or deploy a proof of concept. Salesforce Foundations is not a product or add-on. It’s a multi-cloud feature set that will be added to Sales and Service Cloud — no integration needed, with no additional upfront cost for our customers. It includes foundational features from Sales, Service, Marketing, Commerce, and Data Cloud. Salesforce Foundations provides a 360-degree view of your customer relationships across sales, service, marketing, and commerce through integrated applications and unified data. It also boosts productivity with streamlined, visually friendly user interface improvements, that you can turn on or off per your requirements. If you’re a Salesforce Sales Cloud or Service Cloud customer, you’ve become accustomed to the power, convenience, and full-featured functionality of our trusted CRM. Adding the additional functionality and engagement capabilities of a new Salesforce Cloud is exciting, but it’s also a big change for your organization to consider when you’re not sure about the value it brings. So, what if you could use essential features in the most popular Salesforce Clouds and turn them on when you’re ready? Now you can with Salesforce Foundations. Salesforce Foundations is a new, no-cost addition to your existing CRM that equips you to expand your business reach. The suite gives Salesforce customers on Enterprise, Unlimited, and Einstein 1 editions the power of Data Cloud, and access to essential Salesforce sales, service, Agentforce, marketing, and commerce capabilities. This suite is built into your existing CRM, and provides new functionality to give you a more robust 360-degree view of your customers. This chart shows the Salesforce Foundations features you get with your current Sales Cloud or Service Cloud package. You get Sales for Salesforce Foundations You get Service for Salesforce Foundations You get Marketing for Salesforce Foundations You get Commerce for Salesforce Foundations You get Data Cloud for Salesforce Foundations You get Agentforce for Salesforce Foundations If you already have Sales Cloud * Yes Yes Yes Yes Yes If you already have Service Cloud Yes * Yes Yes Yes Yes If you already have Sales & Service Clouds * * Yes Yes Yes Yes *Your current Salesforce product. Benefits of Salesforce Foundations The features you get with Salesforce Foundations open doors to all sorts of new ways your teams can work more efficiently and engage with your customers on a more personal level. The benefits listed below are only a few of the ways Salesforce Foundations can help your business grow and thrive. Check out Discover Salesforce Foundations to see the full list of capabilities included with Salesforce Foundations. With Salesforce Foundations, your organization benefits from: Sales features that help you take care of your entire sales pipeline, from prospecting to closing. You can manage your leads, opportunities, accounts, and contacts in the preconfigured Sales Console. Service features that make it easy to provide proactive, personalized support to your customers through the preconfigured Service Console. Omni-channel case routing makes sure the most qualified agents work each case, Knowledge Management helps agents provide accurate and relevant help articles to customers, and macros help agents complete repetitive tasks with a single click. Agentforce brings the power of conversational AI to your business. Try out an intelligent, trusted, and customizable AI agent and help your users get more done with Salesforce. Agentforce’s autonomous apps use LLMs and context to assist customers and human agents. Marketing features that allow you to join data from disparate sources, better understand and analyze your customers, and choose how to connect with your audiences. You can create customized marketing campaigns powered by Salesforce Flows to send at the right time. Commerce features that help boost sales with a Direct to Customer (D2C) online storefront. You can define customer experiences like search, carts, and checkout. Pay Now lets you generate secure payment links for customers when opportunities close, so you get paid faster. Data Cloud functionality that creates unified profiles by aggregating data from all of your data sources into a single view so you can better understand your customers. Create customer segments to more accurately target campaigns, analyze your customers, and manage consent data. Data Cloud also powers features so you can send online store order confirmation emails and marketing messages. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentic AI is Here

On Premise Gen AI

In 2025, enterprises transitioning generative AI (GenAI) into production after years of experimentation are increasingly considering on-premises deployment as a cost-effective alternative to the cloud. Since OpenAI ignited the AI revolution in late 2022, organizations have tested large language models powering GenAI services on platforms like AWS, Microsoft Azure, and Google Cloud. These experiments demonstrated GenAI’s potential to enhance business operations while exposing the substantial costs of cloud usage. To avoid difficult conversations with CFOs about escalating cloud expenses, CIOs are exploring on-premises AI as a financially viable solution. Advances in software from startups and packaged infrastructure from vendors such as HPE and Dell are making private data centers an attractive option for managing costs. A survey conducted by Menlo Ventures in late 2024 found that 47% of U.S. enterprises with at least 50 employees were developing GenAI solutions in-house. Similarly, Informa TechTarget’s Enterprise Strategy Group reported a rise in enterprises considering on-premises and public cloud equally for new applications—from 37% in 2024 to 45% in 2025. This shift is reflected in hardware sales. HPE reported a 16% revenue increase in AI systems, reaching $1.5 billion in Q4 2024. During the same period, Dell recorded a record .6 billion in AI server orders, with its sales pipeline expanding by over 50% across various customer segments. “Customers are seeking diverse AI-capable server solutions,” noted David Schmidt, senior director of Dell’s PowerEdge server line. While heavily regulated industries have traditionally relied on on-premises systems to ensure data privacy and security, broader adoption is now driven by the need for cost control. Fortune 2000 companies are leading this trend, opting for private infrastructure over the cloud due to more predictable expenses. “It’s not unusual to see cloud bills exceeding 0,000 or even million per month,” said John Annand, an analyst at Info-Tech Research Group. Global manufacturing giant Jabil primarily uses AWS for GenAI development but emphasizes ongoing cost management. “Does moving to the cloud provide a cost advantage? Sometimes it doesn’t,” said CIO May Yap. Jabil employs a continuous cloud financial optimization process to maximize efficiency. On-Premises AI: Technology and Trends Enterprises now have alternatives to cloud infrastructure, including as-a-service solutions like Dell APEX and HPE GreenLake, which offer flexible pay-per-use pricing for AI servers, storage, and networking tailored for private data centers or colocation facilities. “The high cost of cloud drives organizations to seek more predictable expenses,” said Tiffany Osias, vice president of global colocation services at Equinix. Walmart exemplifies in-house AI development, creating tools like a document summarization app for its benefits help desk and an AI assistant for corporate employees. Startups are also enabling enterprises to build AI applications with turnkey solutions. “About 80% of GenAI requirements can now be addressed with push-button solutions from startups,” said Tim Tully, partner at Menlo Ventures. Companies like Ragie (RAG-as-a-service) and Lamatic.ai (GenAI platform-as-a-service) are driving this innovation. Others, like Squid AI, integrate custom AI agents with existing enterprise infrastructure. Open-source frameworks like LangChain further empower on-premises development, offering tools for creating chatbots, virtual assistants, and intelligent search systems. Its extension, LangGraph, adds functionality for building multi-agent workflows. As enterprises develop AI applications internally, consulting services will play a pivotal role. “Companies offering guidance on effective AI tool usage and aligning them with business outcomes will thrive,” Annand said. This evolution in AI deployment highlights the growing importance of balancing technological innovation with financial sustainability. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Amazon Q Business

Amazon Q Business

Amazon Q Business: Revolutionizing Enterprise Productivity with Generative AI and Plugins Amazon Q Business is a generative AI-powered assistant that empowers employees by solving problems, generating content, and offering actionable insights from across enterprise data sources. In addition to its robust search capabilities across indexed third-party services, Amazon Q Business enables real-time access to dynamic data like stock prices, vacation balances, and location tracking through its plugins. These plugins also allow employees to perform direct actions—such as prioritizing service tickets—within enterprise applications, all through a single interface. This eliminates the need to toggle between systems, saving valuable time and increasing productivity. This insight delves into how Amazon Q Business plugins seamlessly integrate with enterprise applications through built-in and custom configurations. We’ll explore: Simplifying Enterprise Tasks with Plugins Amazon Q Business enables users to access non-indexed data—such as calendar availability, stock prices, or PTO balances—and execute actions like booking a meeting or submitting PTO using services like Jira, ServiceNow, Salesforce, Fidelity, Vanguard, ADP, Workday, and Google Calendar. This unified approach streamlines workflows and minimizes reliance on multiple apps for task completion. Solution Overview Amazon Q Business connects to over 50 enterprise applications using connectors and plugins: Plugins are categorized into two types: Built-in Plugins Amazon Q Business supports more than 50 actions across applications: Category Application Sample Actions Ticketing ServiceNow Create, update, delete tickets Zendesk Suite Search, create, update tickets Project Management Jira Cloud Read, create, update, delete issues Smartsheet Search and manage sheets and reports CRM Salesforce Manage accounts, opportunities, and cases Communication Microsoft Teams Send private or channel messages Productivity Google Calendar Find events, list calendars Salesforce Plugin Example The Salesforce plugin allows users to: Configuration Steps: Custom Plugins For scenarios not covered by built-in plugins, custom plugins enable seamless integration with proprietary systems. For example: HR Time Off Plugin Example This plugin allows employees to: Setup Steps: End-to-End Use Cases 1. Salesforce Integration Sam, a Customer Success Manager, retrieves high-value opportunities using the Salesforce plugin. She creates a new case directly from the Amazon Q interface, enhancing efficiency by reducing application switching. 2. ServiceNow Ticket Management Sam uses Amazon Q Business to resolve a laptop email sync issue. After referencing indexed IT documentation, she creates a ServiceNow ticket and escalates it directly through the plugin interface. 3. HR System Integration Sam checks her PTO balance and submits a vacation request using the HR Time Off custom plugin, ensuring seamless task completion without switching to another app. Impact on Workflow Efficiency Amazon Q Business plugins simplify workflows by: Conclusion Amazon Q Business plugins represent a transformative step in automating enterprise workflows and enhancing employee productivity. From preconfigured integrations to custom-built solutions, these plugins provide unparalleled flexibility to adapt to diverse business needs. How can Amazon Q Business transform workflows in your organization? Whether through built-in integrations or custom solutions, explore the power of Amazon Q Business plugins to unlock new levels of efficiency. Share your feedback and use cases to inspire innovation across enterprises! Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Salesforce and AWS-Agentic Enterprise

Salesforce and AWS: Driving the Future of the Agentic Enterprise As AI-powered agents redefine the way businesses operate, strategic partnerships are playing a pivotal role in harnessing the power of data and artificial intelligence. Salesforce and AWS, two industry leaders, have taken significant steps toward building a smarter, agentic enterprise through their expanded collaboration. One year into this strategic partnership, their joint efforts are delivering transformative AI and data solutions, helping customers like Buyers Edge Platform unlock new efficiencies and capabilities. A Partnership Fueling Agentic AI Salesforce and AWS are aligning their AI and data initiatives to pave the way for advanced agentic systems—autonomous AI agents designed to enhance business operations and customer experiences. Among their notable achievements over the past year are: These innovations are creating an ecosystem that supports the delivery of agentic AI, enabling businesses to streamline operations and tap into new value from their data. “By integrating data and AI capabilities across our platforms, Salesforce and AWS are building a strong foundation for the future of agentic systems,” said Brian Landsman, EVP of Global Business Development and Technology Partnerships at Salesforce. “With a majority of large companies planning to implement agents by 2027, organizations need trusted partners to help them achieve their vision of a smarter enterprise.” Making AI More Accessible Salesforce is simplifying access to AI technology through the AWS Marketplace, offering customers an integrated solution that includes Agentforce—the agentic layer of the Salesforce platform. Agentforce enables businesses to deploy autonomous AI agents across various operations, streamlining workflows and delivering measurable results. Available in 23 countries, Salesforce’s presence on AWS Marketplace offers customers key advantages, including: By removing barriers to adoption, Salesforce and AWS empower companies to focus on leveraging technology for growth rather than navigating complex procurement systems. A New Era of Enterprise Efficiency As businesses increasingly rely on data and AI to remain competitive, the Salesforce-AWS partnership is setting the stage for enterprises to achieve more with agentic systems. These systems allow companies to execute complex tasks with unprecedented efficiency, maximizing ROI on technology investments. “Our partnership with Salesforce empowers mutual customers to realize the full potential of their data and AI investments,” said Chris Grusz, Managing Director of Technology Partnerships at AWS. “Together, we’re delivering immediate, actionable insights with agentic AI, enabling organizations to automate strategically and unlock more value across their operations.” Looking Ahead By seamlessly integrating data and AI capabilities, Salesforce and AWS are not just building technology solutions—they’re reshaping how enterprises operate and thrive in the digital age. As agentic AI becomes an essential part of business strategy, this partnership provides a blueprint for leveraging technology to drive smarter, more agile, and more effective enterprises. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Autonomy, Architecture, and Action

Redefining AI Agents: Autonomy, Architecture, and Action AI agents are reshaping how technology interacts with us and executes tasks. Their mission? To reason, plan, and act independently—following instructions, making autonomous decisions, and completing actions, often without user involvement. These agents adapt to new information, adjust in real time, and pursue their objectives autonomously. This evolution in agentic AI is revolutionizing how goals are accomplished, ushering in a future of semi-autonomous technology. At their foundation, AI agents rely on one or more large language models (LLMs). However, designing agents is far more intricate than building chatbots or generative assistants. While traditional AI applications often depend on user-driven inputs—such as prompt engineering or active supervision—agents operate autonomously. Core Principles of Agentic AI Architectures To enable autonomous functionality, agentic AI systems must incorporate: Essential Infrastructure for AI Agents Building and deploying agentic AI systems requires robust software infrastructure that supports: Agent Development Made Easier with Langflow and Astra DB Langflow simplifies the development of agentic applications with its visual IDE. It integrates with Astra DB, which combines vector and graph capabilities for ultra-low latency data access. This synergy accelerates development by enabling: Transforming Autonomy into Action Agentic AI is fundamentally changing how tasks are executed by empowering systems to act autonomously. By leveraging platforms like Astra DB and Langflow, organizations can simplify agent design and deploy scalable, effective AI applications. Start building the next generation of AI-powered autonomy today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Project Management With Asana and Salesforce

Salesforce and Asana Integration Approach

How to Integrate Asana and Salesforce: A Complete Guide Table of Contents Integrating Asana and Salesforce can eliminate workflow silos and accelerate collaboration. Both platforms offer integration capabilities, but their suitability varies based on your needs and resources. This guide will help you navigate the options, evaluate their pros and cons, and choose the one that best suits your organization. Can You Integrate Asana and Salesforce? Yes! Asana and Salesforce integration is possible through three primary methods: Each option comes with unique features, costs, and technical requirements. This guide explores each solution to help you make an informed decision. Why Integrate Asana and Salesforce? Integration can achieve two major goals: Depending on your goals, certain integration methods may be better suited to your needs. Integration Options Overview 1. Asana for Salesforce This official integration is ideal for large organizations with Enterprise-level plans for both Asana and Salesforce. It enables automation of workflows between the two platforms, such as: Pros: Cons: Rating: 2.6/5 on Salesforce AppExchange. 2. Visor Visor offers bi-directional integration with Asana and Salesforce, making it a powerful choice for combining and visualizing data. Key Features: Best For: Setup Steps: Limitations: 3. Zapier Zapier enables custom automation between Asana and Salesforce. It’s perfect for automating simple, repetitive workflows, such as: Pros: Cons: Quick Comparison Table Feature Asana for Salesforce Zapier Visor Automates processes ✔ ✔ ✘ Combines Salesforce & Asana data ✘ ✘ ✔ Gantt charts and project boards ✘ ✘ ✔ Dashboards and timelines ✘ ✘ ✔ Two-way data sync ✘ ✘ ✔ Comparison Table Which Integration Option Is Best for You? The right choice depends on your goals: Get Started with Visor for Free Visor is one integration tool, that helps you bridge the gap between Asana and Salesforce, offering advanced visualization tools and seamless collaboration. Start using Visor for free today: Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com