Data Quality Archives - gettectonic.com

Why Its Good to be Data-Driven

The Power of Data-Driven Decision Making Success in business hinges on the ability to make informed decisions. Every operational aspect, from minor choices like office furniture selection to critical investments such as multi-million-dollar marketing campaigns, is shaped by a series of interrelated decisions. While instinct and intuition may play a role, most business choices rely on relevant data—covering aspects such as objectives, pricing, technology, and potential risks. However, excess irrelevant data can be just as detrimental as insufficient accurate data. Why Its Good to be Data-Driven organization… The Evolution of Data-Driven Decision Making Organizations that prioritize data-driven strategies rely on accurate, relevant, complete, and timely data. Simply amassing large volumes of information does not equate to better decision-making; companies must democratize data access, ensuring it is available to all employees rather than limited to data analysts. The practice of using data to inform business decisions gained traction in the mid-20th century when researchers identified decision-making as dynamic, complex, and often ambiguous. Early techniques like decision trees and prospect theory emerged in the 1970s alongside computer-aided decision-making models. The 1980s saw the rise of commercial decision support systems, and by the early 21st century, data warehousing and data mining revolutionized analytics. However, without clear governance and organizational policies, these vast data stores often fell short of their potential. Today, the goal of data-driven decision-making is to combine automated decision models with human expertise, creativity, and critical thinking. This approach requires integrating data science with business operations, equipping managers and employees with powerful decision-support tools. Characteristics of a Data-Driven Organization A truly data-driven organization understands the value of its data and maximizes its potential through structured alignment with business objectives. To safeguard and leverage data assets effectively, businesses must implement governance frameworks ensuring compliance with privacy, security, and integrity standards. Key challenges in establishing a data-driven infrastructure include: The Benefits of a Data-Driven Approach Businesses recognize that becoming data-driven requires more than just investing in technology; success depends on strategy and execution. According to KPMG, four critical factors contribute to the success of data-driven initiatives: A data-driven corporate culture accelerates decision-making, enhances employee engagement, and increases overall business value. Integrating ethical considerations into data usage is crucial for mitigating biases and maintaining data integrity. Transitioning to a Data-Driven Business With the rapid advancement of generative AI, data-driven organizations are poised to unlock trillions of dollars in economic value. McKinsey estimates that AI-driven decision-making could add between .6 trillion and .4 trillion annually across key sectors, including customer operations, marketing, software engineering, and R&D. To successfully transition into a data-driven organization, companies must: By embracing a data-driven model, organizations enhance their ability to make automated yet strategically sound decisions. With seamless data integration across CRM, ERP, and business applications, companies empower human decision-makers to apply their expertise to high-quality, actionable insights—driving innovation and competitive advantage in a rapidly evolving marketplace. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Prioritize Data Quality

Prioritize Data Quality

Prioritize Data Quality: Strengthening Governance for AI and Business Success 86% of analytics and IT leaders agree: AI’s effectiveness depends on the quality of its data inputs. High data quality brings organizations closer to data maturity and AI success—and it all starts with strong data governance. 🔹 92% of analytics and IT leaders say there’s never been a greater need for trustworthy data.📊 The State of Data and Analytics Report, 2023 Building a Strong Data Governance Strategy Data governance is more than compliance—it’s a structured approach to managing data quality, security, and usability. With the right governance in place, teams gain confidence in their data, leading to smarter decision-making and a culture of trust. Follow these six steps to lay the foundation for a successful governance strategy: 1. Align Governance Policies with Business Needs Meet with stakeholders to understand how data is used across teams. Ensure governance policies cover every critical workflow and use case, helping teams get the data they need—accurately and securely. 2. Define What ‘Data Quality’ Means for Your Organization Create a clear framework using these key data quality dimensions: ✅ Completeness: Are all necessary data fields populated?✅ Timeliness: Is data up to date and aligned with business goals?✅ Validity: Does data comply with governance rules and constraints?✅ Usage: How frequently is the data used for reporting and decision-making?✅ Accuracy: Does the data reflect reality, and is it sourced from trusted origins?✅ Consistency: Are data formatting and structure standardized across sources?✅ Reliability: Has data maintained quality and consistency over time? 3. Implement a Robust Quality Control Process Standardized processes—data entry validation, deduplication, cleansing, and archiving—are essential for governance. Leverage AI-powered tools like Tableau CRM Analytics to automate these tasks with built-in data profiling and enrichment features. 4. Schedule Regular Governance Reviews Your business evolves—your governance strategy should too. Establish a review cadence to assess policies, update processes, and address new data challenges. 5. Train Teams on Data Security and Compliance Education is key. Assign role-based security permissions, ensure regulatory compliance, and provide a clear process for reporting data issues (e.g., a dedicated Slack channel or help desk). 6. Define Success with Data Governance KPIs Tracking governance effectiveness is essential. Use these key metrics to measure impact: Metric Example of Smart KPI How to Track Data Quality Improve overall data quality by 4% per quarter. Assign values to frequency, error rates, and data usage. Data Usage Increase customer data-driven decision-making by 30% in 12 months. Measure employee logins, reports accessed, and data utilization. Time-to-Insight Reduce time from customer action → dashboard update to 10 minutes by next quarter. Track time-to-insight vs. benchmarks. Moving Up the Data Maturity Curve A well-governed data strategy leads to: 📈 Higher efficiency in decision-making🚀 More successful AI and analytics initiatives🏆 Competitive advantage through trustworthy data 🔍 “Ascending the data maturity curve unlocks new efficiencies and a competitive edge.”— Funke Bishi, Associate Director, Data and Business Analysis, RBC Capital Markets Take Action: Strengthen Your Data Governance ✅ Define what ‘quality data’ means for your business.✅ Align governance policies with team needs.✅ Use AI-powered tools like Tableau Data Prep for automated cleansing.✅ Train leaders on data best practices and compliance. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Predictive Analytics for Business Potential

Predictive Analytics for Business Potential

Maximizing Business Potential with Predictive Analytics Every business generates vast amounts of data daily, yet not all leverage it effectively. Predictive analytics transforms raw data into actionable insights, enabling companies to forecast demand, reduce operational costs, and enhance customer engagement. Whether through AI-powered models, machine learning algorithms, or cloud-based analytics, predictive analytics is reshaping business strategies. Organizations that integrate predictive analytics into decision-making can anticipate challenges, seize new opportunities, and outperform competitors. This insight explores the significance of predictive analytics and how businesses can harness its power to gain a competitive edge. The Expanding Influence of Predictive Analytics Predictive analytics is revolutionizing industries, driving innovation, and transforming data into strategic advantages. Transforming Industries with Predictive Analytics Predictive analytics is now a cornerstone of modern industries, facilitating smarter decision-making through data-driven insights. By analyzing historical data, businesses can forecast trends, anticipate customer behaviors, and optimize operations. Sectors such as healthcare, retail, and finance are leveraging predictive tools to maintain competitiveness. For example: As industries adopt these solutions, predictive analytics continues to redefine efficiency and innovation. Key Trends in Predictive Analytics Adoption The widespread adoption of predictive analytics is fueled by advancements in AI, big data, and machine learning. Businesses are capitalizing on these trends to sharpen their competitive edge. Notable developments include: As predictive analytics tools become more sophisticated, they are becoming integral to business strategies, helping companies unlock untapped potential. Overcoming Implementation Challenges Despite its benefits, implementing predictive analytics poses challenges, such as data silos, integration complexities, and skill gaps. To address these issues, organizations should: By overcoming these barriers, businesses can fully harness predictive analytics to drive efficiency, innovation, and growth. Predictive Data Modeling for Smarter Decision-Making Predictive data modeling transforms raw data into strategic insights, improving forecasting and operational decision-making. Understanding Predictive Data Modeling Predictive data modeling employs statistical techniques and machine learning algorithms to analyze historical data and predict future trends. Its core components include: By applying these models, businesses can refine their strategies with data-backed insights, improving efficiency and competitiveness. The Role of Data Quality in Predictive Accuracy The effectiveness of predictive models depends on data quality. Inconsistent or outdated data can lead to unreliable predictions, affecting decision-making. Key steps to ensure high data quality include: High-quality data enhances predictive models, enabling businesses to make informed, confident decisions. Enhancing Forecasting with Predictive Data Modeling Predictive data modeling improves forecasting accuracy by analyzing historical trends and projecting future outcomes. Benefits include: Retailers optimize inventory, while manufacturers align production with demand fluctuations, demonstrating the strategic value of predictive modeling. Driving Business Growth with Predictive Analytics Why Businesses Should Adopt Predictive Analytics Now In today’s competitive landscape, predictive analytics is essential for staying ahead. By leveraging data, algorithms, and machine learning, businesses can anticipate risks and opportunities, optimizing strategies while reducing uncertainty. Retailers, for instance, use predictive insights to forecast seasonal demand spikes, ensuring optimal stock levels. As AI advances, predictive analytics is more accessible than ever, making now the ideal time for adoption. Enhancing Decision-Making and Efficiency Predictive analytics eliminates guesswork, empowering leaders with data-backed decisions. Benefits include: These advantages drive sustainable growth and competitive advantage across industries. Seamlessly Integrating Predictive Analytics into Business Workflows To maximize impact, predictive analytics must integrate into existing workflows. Steps for successful adoption include: By embedding predictive analytics into workflows, businesses enhance agility and decision-making capabilities. AI-Powered Predictive Analytics for Competitive Advantage Why AI Predictive Analytics is Transformative AI-powered predictive analytics delivers insights beyond traditional methods, processing vast datasets rapidly to identify complex patterns and trends. Applications include: With AI continuously learning and refining predictions, businesses gain a dynamic advantage. Enhancing Accuracy with AI AI refines predictions by analyzing diverse data sources, including text, images, and videos. Examples include: Advanced AI techniques, such as natural language processing and neural networks, ensure businesses derive actionable insights, driving smarter strategies and better results. Machine Learning’s Role in Predictive Analytics Machine learning (ML) is foundational to predictive analytics, continuously improving model accuracy. Examples include: By leveraging ML, businesses enhance their predictive capabilities, ensuring long-term competitive success. Enhancing Enterprise Solutions with Predictive Analytics Transforming SAP Systems with Predictive Analytics SAP systems integrated with predictive analytics unlock actionable insights from vast datasets. Benefits include: By embedding predictive capabilities, SAP users can optimize operations and drive proactive decision-making. Empowering Salesforce with Predictive Insights Salesforce predictive analytics enhances decision-making across marketing, sales, and customer service. Key capabilities include: With Salesforce Einstein, businesses can streamline operations, boost performance, and foster deeper customer engagement. Predictive analytics is a game-changer, reshaping industries, optimizing operations, and unlocking new growth opportunities. Businesses that embrace predictive analytics today will be well-positioned to navigate future challenges and lead in the data-driven economy. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
salesforce agentforce ai powered agentic agents

Building Trusted AI

Building Trusted AI: A Roadmap for IT Leaders AI is revolutionizing how organizations operate, fueling workflows, creativity, and innovation at unprecedented levels. It’s no surprise that nearly 70% of senior IT leaders now consider AI a top business priority. But with great potential comes great responsibility. AI introduces challenges around trust, security, and ethics, extending far beyond today’s implementations. To fully harness AI’s power—while ensuring transparency and security—IT leaders must take a structured, responsible approach. Here are five key steps to maximize AI’s potential without compromising trust. Step 1: Build AI on a Foundation of Quality Data AI is only as good as the data it’s built on. Generative AI models rely on vast datasets to generate meaningful outputs—but poor-quality data can lead to bias, irrelevance, or even harmful results. To ensure data integrity:✔ Diversify data sources to reflect different perspectives, scenarios, and contexts, reducing bias.✔ Clean and normalize data to minimize noise and ensure consistent quality.✔ Use tools like Privacy Center to manage data across multiple sources and eliminate duplicates.✔ Continuously refine datasets to stay aligned with evolving trends and insights. By prioritizing high-quality, well-managed data, organizations set a strong foundation for ethical and reliable AI systems. Learn how AI works and how to use it responsibly on Trailhead, Salesforce’s free learning platform. Step 2: Define Ethical Boundaries and Strengthen Data Privacy Trust is built on respecting customer privacy and protecting sensitive data. With AI systems handling personally identifiable information (PII) and other confidential data, strong policies are essential. Key actions to prioritize AI ethics and privacy: 🔹 Adopt secure, compliant data handling from collection to storage (Privacy Center helps manage retention policies).🔹 Implement data minimization—collect only what’s needed and retain it only as long as necessary.🔹 Encrypt sensitive data and limit access to authorized personnel and systems.🔹 Form an ethical AI task force to oversee compliance and mitigate legal or reputational risks. Transparency in data collection and usage builds trust and helps prevent misuse. Step 3: Conduct Regular AI Audits Even with ethical safeguards, AI can produce unintended biases, inaccuracies, or misinformation—especially in critical decision-making scenarios. A robust AI auditing strategy includes: ✔ Automated compliance checks to scan AI outputs against ethical standards and policies.✔ User feedback loops (surveys, interviews) to assess AI performance and its real-world impact.✔ Risk identification and mitigation—proactively addressing emerging challenges. Regular audits ensure AI remains accurate, fair, and aligned with business objectives. Step 4: Strengthen AI Security and Monitoring AI systems process valuable data, making security a top priority—especially in regulated industries. In response, governments worldwide, including the U.S. White House and the EU, are introducing policies for independent AI audits. How to protect AI systems: ✔ Define strict access controls to limit AI interactions to authorized users only.✔ Use tools like Security Center to manage user permissions and secure configurations.✔ Conduct ongoing security reviews (including penetration testing and quality control).✔ Enable Event Monitoring to set alerts or block unintended AI actions. By embedding security into every layer of AI processes, organizations can trust the AI they deploy. Step 5: Prioritize Transparency and Encourage Feedback A lack of transparency breeds distrust. In fact, only 42% of customers trusted businesses to use AI ethically in 2024—a 16% decline from the previous year. How to build AI transparency: 🔹 Clearly label AI-generated content so users know when AI is at work.🔹 Document AI processes to explain how data is collected, processed, and used.🔹 Disclose AI auditing and security measures to reinforce trust.🔹 Actively gather feedback to assess AI’s impact and align it with organizational values. Transparency isn’t just about compliance—it’s about building lasting trust with customers and stakeholders. Trusted AI is a Journey, Not a Destination Building trustworthy AI requires continuous effort—not just a one-time fix. Organizations must take a proactive approach to data quality, security, audits, and transparency. Platforms like Agentforce are designed to support responsible AI adoption—from policy creation to implementation—helping businesses innovate securely and ethically. By embedding trust into AI strategies today, businesses can lead with confidence tomorrow. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Rule-Based vs. Machine Learning Deduplication Approaches

Rule-Based vs. Machine Learning Deduplication Approaches

Choosing the Right Tool for Salesforce Deduplication: Rule-Based vs. Machine Learning Approaches When you browse Salesforce AppExchange for a deduplication solution, you’re presented with two primary options: rule-based deduplication tools or machine learning-powered applications. Both have their strengths, but understanding their methods will help you make an informed decision. Below, we’ll explore these approaches and their pros and cons to guide your choice. Why Salesforce’s Built-in Deduplication Falls Short Salesforce, while a powerful CRM, doesn’t excel at large-scale deduplication. Its native tools are limited to basic, rule-based matching, which may struggle with complexities like typos, inconsistent formatting, or unstructured data. Additionally, Salesforce’s deduplication features lack the scalability required for organizations dealing with large datasets or multiple data sources (e.g., third-party integrations, legacy systems). Businesses often need supplemental tools to address overlapping records or inconsistencies effectively. How Rule-Based Deduplication Works Popular rule-based tools on AppExchange, such as Cloudingo, DemandTools, DataGroomr, and Duplicate Check, require users to create filters that define what constitutes a duplicate. For example: Ultimately, the user manually defines the rules, deciding how duplicates are identified and handled. Benefits of Rule-Based Deduplication Drawbacks of Rule-Based Deduplication How Machine Learning-Based Deduplication Works Machine learning (ML)-powered tools rely on algorithms to identify patterns and relationships in data, detecting duplicates that may not be apparent through rigid rules. Key Features of ML Deduplication Techniques Used Benefits of ML-Based Deduplication Drawbacks of ML-Based Deduplication When to Choose Rule-Based vs. Machine Learning Deduplication Choose Rule-Based Deduplication If: Choose Machine Learning-Based Deduplication If: Selecting the Right Deduplication Tool When evaluating tools on AppExchange, consider these factors: Tectonic’s Closing Thoughts Rule-based and machine learning-based deduplication each serve distinct purposes. The right choice depends on your data’s complexity, the resources available, and your organization’s goals. Whether you’re seeking a quick, transparent solution or a powerful, scalable tool, AppExchange offers options to meet your needs and help maintain a clean Salesforce data environment. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ai in marketing

Guide to AI in Marketing

The Ultimate Guide to AI in Marketing AI-powered algorithms and machine learning are revolutionizing the marketing landscape by enabling swift processing and analysis of vast datasets. Unlike traditional methods, AI efficiently organizes large volumes of data in real time, redefining how marketing strategies are created and executed. Marketing success hinges on effective data utilization, precise targeting, engaging content, and seamless workflows. AI simplifies these complexities, making them more accessible, scalable, and impactful. Here’s how AI transforms modern marketing. Unleashing AI’s Potential in Marketing AI has become a cornerstone for enhancing customer experiences and boosting marketing productivity. However, to fully leverage AI, it’s essential to understand its capabilities and implementation strategies. Think of AI as your vehicle for uncovering actionable customer insights, optimizing campaigns, and creating tailored customer experiences. While the pace of AI’s evolution may seem overwhelming, this guide will help you take control and confidently drive your AI-powered marketing efforts. Future Trends in Generative AI and Marketing Generative AI is unlocking new possibilities in customer engagement. This guide explores the challenges, advantages, and emerging trends in AI-driven marketing. From attracting customers to maximizing ROI, you’ll discover best practices and real-world examples of successful AI adoption. How AI Works in Marketing AI uses advanced algorithms and pattern recognition to simulate human intelligence in processing data. Through machine learning and deep learning, it identifies trends, predicts outcomes, and automates tasks typically requiring human intervention. Like humans learning from experience, AI improves with practice. It rapidly identifies consumer preferences, behaviors, and purchasing patterns. Two primary types of AI stand out in marketing: These AI types work together—predictive AI extracts insights from data, while generative AI uses those insights to create personalized content and solutions. This synergy enables marketers to automate tasks, segment audiences, and deliver tailored messaging based on individual preferences. AI in Action: Enhancing Customer Engagement AI enables marketers to engage with customers more effectively by: The Power of AI-Driven Marketing Analytics AI-powered analytics revolutionize decision-making by identifying patterns and offering actionable insights. Marketers can use AI tools to: Maximizing ROI with AI AI enables businesses to expand audience reach, improve conversion rates, and enhance customer relationships through personalized content and product recommendations. Its real-time analytics empower marketers to make informed decisions, while automation frees up time for strategic innovation. Navigating Challenges in AI Marketing AI’s potential comes with challenges, including: By prioritizing ethical practices, transparent data policies, and robust compliance measures, marketers can overcome these obstacles and leverage AI responsibly. Best Practices for AI-Driven Marketing To maximize the benefits of AI, marketers should: The Future: AI Copilots in Marketing AI copilots—conversational AI integrated into platforms—are transforming marketing workflows. These tools draft content, provide recommendations, and offer guidance based on CRM data, significantly enhancing efficiency. Looking Ahead: Emerging Trends in AI Marketing Over the next two years, advancements in AI will continue to reshape marketing. Key trends include: By embracing these advancements, marketers can deliver exceptional customer experiences, drive business growth, and stay competitive in an evolving digital landscape. AI is not just a tool—it’s a transformative force. By integrating AI into your marketing strategy, you can unlock unparalleled opportunities to engage customers, optimize campaigns, and propel your organization into the future. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce Implementation Help

How to Make Workloads More Manageable

How to Make Workloads More Manageable: 6 Useful Tips for Salesforce Admins Being a Salesforce Administrator is both rewarding and challenging. The role involves managing a platform that evolves continuously while addressing a business’s ever-changing needs. From resolving cases to managing system updates, user configurations, and deployments, the list of responsibilities can often feel overwhelming. Here are six actionable tips to help Salesforce Admins stay on top of their workload and avoid burnout. 1. Integrate Data Quality into Salesforce Data Projects Maintaining data quality should be a cornerstone of every Salesforce project. A clear and structured approach to data can prevent errors, improve efficiency, and reduce time spent troubleshooting. 2. Break Down Tasks Admins often face long to-do lists, sometimes with 50 or more actionable items. Breaking down the workload into manageable segments can help: Once segmented, estimate the time required for each task to better plan days, weeks, or months. This process makes it easier to identify whether the workload is manageable. 3. Prioritize Effectively Not all tasks carry equal weight. Prioritization should consider both the value of the task and the time required to complete it. While tasks that yield tangible ROI in time or cost savings are essential, smaller items that improve user experience also hold value. Avoid the trap of prioritizing tasks simply in the order they are received. Collaborating with stakeholders such as business analysts, architects, and leadership ensures each task is assessed on its individual merits. 4. Stay in Scope Scope creep is a common challenge that can quickly derail effective prioritization. Tasks outside the defined scope should not make it onto the to-do list. To scope effectively, clear and well-defined user stories are essential. Admins should ask clarifying questions until they fully understand the requirements. This proactive questioning empowers admins to maintain focus and deliver value efficiently. 5. Streamline Requests Through a Single Channel Managing requests from multiple sources—emails, Slack, meetings, or even casual conversations—can lead to chaos. Establish a single, consistent channel for submitting user stories and feature requests, such as a kanban-style tool like JIRA. Tools with integration capabilities, such as creating tickets directly from Slack, further simplify the process. Without a formal ticket in the system, requests should not be considered valid. 6. Leverage the Right Tools The right tools can make a significant difference in workload management. For example, deploying components like Flows using change sets can be time-consuming and frustrating. Tools designed to streamline deployments, reporting, or configuration management can free up valuable time for more impactful tasks. 🔔🔔  Follow us on LinkedIn  🔔🔔 Finally, Jump on In Admins often face tasks they dread—those long, tedious, boring ones as a thing to be avoided. Delaying difficult tasks can make them grow more daunting over time. Completing them early not only reduces anxiety but also improves productivity and outcomes. Tectonic’s Conclusion With thoughtful strategies, Salesforce Admins can transform overwhelming workloads into manageable, structured tasks. By breaking down responsibilities, prioritizing effectively, staying in scope, streamlining requests, and using the right tools, admins can excel in their roles while maintaining work-life balance. And by jumping right in they can ensure even the most challenging tasks are handled efficiently. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentic AI is Here

Agentic AI Revolution

The Agentic AI Revolution: Lead, Follow, or Get Out of the Way The era of agentic AI is here, and the message is clear—if you’re not leading the charge, you’re falling behind. Companies like Wiley and OpenTable are reshaping their industries with autonomous AI agents that don’t just assist but also analyze, strategize, and execute tasks with unparalleled efficiency. As these organizations demonstrate, the key to AI success lies in rewriting the rules of your industry rather than playing catch-up. Rewriting Industry Standards with Agentic AI Wiley: The education giant leveraged Agentforce, a digital labor platform for deploying autonomous AI agents, to transform its customer service operations. By onboarding representatives 50% faster and improving case resolution by 40%, Wiley streamlined its processes in just a few weeks. AI agents now handle registration and payment inquiries, directing students to resources and reducing the workload on human representatives. OpenTable: As the go-to reservation platform for 1.7 billion diners annually, OpenTable deploys AI agents to manage reservation changes and loyalty points. This allows employees to focus on customer relationships. Even a two-minute efficiency gain per interaction translates to massive operational savings. Salesforce Help Site: With over 60 million annual visits, the Salesforce Help site integrated Agentforce to resolve 83% of queries without human involvement. In just weeks, Agentforce doubled its capacity, handling over 32,000 automated conversations. These examples showcase a new era of digital labor where AI agents orchestrate high-value, multistep tasks, working tirelessly to deliver results. Far from replacing humans, they supercharge productivity and innovation, enabling companies to do more than ever before. How to Empower Your Workforce with AI Empowering your workforce for the next wave of AI doesn’t require months of preparation or millions of dollars. You don’t need to build or train your own large language model (LLM). Instead, integrating AI with existing data, automation, and workflows is the key to success, as demonstrated by leaders like Wiley and OpenTable. Here’s how to get started: 1. Real-Time Data Access AI thrives on real-time, high-quality data. Platforms like Salesforce Data Cloud unify structured and unstructured data, connecting it seamlessly to the LLM. Techniques such as retrieval-augmented generation (RAG) and semantic search ensure AI agents can access the most relevant data for any task. 2. Advanced Reasoning AI agents aren’t just about answering queries—they execute complex, multistep tasks. For example, they can process returns, reorder items, and even flag anomalies. Powered by reasoning engines, these agents draw data from systems like CRM, refine plans, and adapt dynamically until the task is completed correctly. 3. Built-In Security AI agents must operate within clear guardrails, knowing their limits and handing tasks off to humans when necessary. Strong permissions and security protocols are essential to ensure data protection and prevent unauthorized actions. 4. Action-Oriented Workflows Generative AI’s real value lies in action. By integrating tools like Salesforce Flow for task automation and MuleSoft APIs for system connectivity, AI agents can execute business workflows such as fraud detection, customer outreach, and case management. 5. Human-AI Collaboration The future of work isn’t AI replacing humans—it’s AI and humans working together. While agents handle data-intensive and repetitive tasks, humans bring strategic thinking, empathy, and creativity. This synergy leads to smarter decisions and redefines workflows across industries. Why Training Your Own LLM May Not Be the Answer Many companies assume training a proprietary LLM will give them a competitive edge. In reality, this process is costly, time-intensive, and requires constant updates to remain accurate. An LLM trained on static data quickly becomes outdated, much like a GPS that fails after the first detour. Instead, companies are turning to out-of-the-box AI solutions that integrate seamlessly with their existing systems. These tools offer the flexibility to scale quickly and adapt in real time, enabling businesses to stay competitive without the heavy lift of building from scratch. Scaling AI for the Future Many organizations remain stuck in pilot phases with AI due to data quality issues and a limited understanding of use cases. Companies like Wiley and OpenTable, however, have cracked the code: integrating prebuilt AI systems with robust data flows, automation, and workflows. By embracing agentic AI, forward-thinking organizations are creating digital labor forces that unlock new efficiencies, enhance customer experiences, and position themselves for long-term success. The trillion-dollar AI opportunity awaits—will you lead or trail behind? Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ai in supply chain

AI in Supply Chain

AI has the potential to transform supply chain management by boosting efficiency, enhancing forecasting, and improving customer satisfaction. However, it’s crucial for leaders to weigh the associated costs, technical challenges, and risks to ensure a smooth and strategic implementation. By addressing these disadvantages, companies can fully unlock AI’s benefits while minimizing its drawbacks.

Read More

Salesforce Business Automation

Streamlining Business Automation: A Guide to Successful Salesforce Implementation Salesforce is a lightning jolt for business automation, offering powerful tools to enhance efficiency and productivity. However, implementing Salesforce is a complex process that requires strategic planning and execution. This insight will walk you through best practices for Salesforce implementation, helping you avoid common pitfalls and maximize the platform’s benefits. From defining clear business objectives to post-implementation performance measurement, we’ve got you covered. Understanding Salesforce Implementation Implementing Salesforce is more than simply installing software—it’s a strategic process that must align with your business goals. Successful implementation requires understanding each critical phase, including: Each phase builds toward a solution that drives operational improvements and delivers measurable results. The Role of Salesforce in Business Automation Salesforce transforms business processes by automating repetitive tasks, integrating workflows, and providing real-time analytics. These capabilities empower teams to focus on strategic activities, fostering growth and improving customer engagement. The platform’s automation features enhance decision-making, streamline operations, and deliver actionable insights, making it an essential tool for any data-driven organization. Best Practices for Salesforce Implementation 1. Define Clear Business Objectives Set specific, measurable, and strategic goals that Salesforce can address. Identify business challenges and align objectives with user needs to ensure widespread adoption and long-term success. 2. Conduct a Thorough Needs Analysis Analyze existing processes, identify gaps, and engage stakeholders to gather input. A detailed needs analysis ensures Salesforce is configured to address real pain points and deliver value. 3. Develop a Comprehensive Roadmap Create an implementation roadmap outlining timelines, responsibilities, resources, and risk mitigation strategies. A clear roadmap keeps the project on track and fosters effective communication. 4. Prioritize Data Quality and Governance Start by cleansing existing data to remove inaccuracies and duplicates. Implement governance policies to maintain data integrity, ensuring Salesforce delivers accurate insights. 5. Customize Thoughtfully Tailor Salesforce to enhance existing workflows rather than disrupting them. Engage users to understand their needs and avoid unnecessary complexity that could hinder usability or future updates. 6. Engage Certified Salesforce Partners Collaborate with experienced Salesforce partners to leverage best practices, avoid common pitfalls, and tailor the platform to your unique requirements. The Importance of User Adoption and Training User adoption is crucial for Salesforce’s success. Engage end-users early, involve them in the process, and provide tailored, hands-on training. Post-launch, offer continuous support and advanced training to help users unlock Salesforce’s full potential. Strategies to maximize adoption include: Post-Implementation Success Once Salesforce is live, focus on monitoring performance, gathering feedback, and fostering continuous improvement. 1. Measure Success with KPIs Track key performance indicators (KPIs) to evaluate Salesforce’s impact on your business objectives. Identify trends, address challenges, and ensure the platform remains aligned with your goals. 2. Establish a Feedback Mechanism Encourage users to share feedback and suggest improvements. Regularly review input to refine the system and ensure it evolves with your organization’s needs. 3. Provide Ongoing Support Maintain a dedicated support team to address queries and troubleshoot issues promptly. Continuous training sessions keep users updated and confident in leveraging new features. Avoiding Common Pitfalls Awareness of potential challenges can help you mitigate risks. Common pitfalls to avoid include: By addressing these challenges proactively, you set your Salesforce implementation up for success. Embracing the Salesforce Journey Implementing Salesforce is a transformative opportunity for your business. With strategic planning, stakeholder engagement, and a commitment to continuous improvement, Salesforce can revolutionize your operations. If you’re seeking a streamlined solution, consider leveraging tools like Sweep, an AI-powered visual workspace that simplifies Salesforce implementation. With Sweep’s no-code interface, you can design processes, customize fields, and automate workflows effortlessly. Ready to transform your business with Salesforce?Connect with our experts today and unlock the full potential of Salesforce for your organization. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI is revolutionizing BI by transforming it from a retrospective tool into a proactive, real-time decision-making engine.

AI in Business Intelligence

AI in Business Intelligence: Applications, Benefits, and Challenges AI is rapidly transforming business intelligence (BI) by enhancing analytics capabilities and streamlining processes. This shift is reshaping how organizations leverage data for decision-making. Here’s an in-depth look at how AI complements BI, its advantages, and the challenges it introduces. The Evolution of Business Intelligence with AI BI has traditionally focused on aggregating historical and current data to provide insights into business operations—a process known as descriptive analytics. However, many decision-makers seek more: insights into future trends (predictive analytics) and actionable recommendations (prescriptive analytics). AI bridges this gap. With advanced tools like natural language processing (NLP) and machine learning (ML), AI enables businesses to move beyond static dashboards to dynamic, real-time insights. It also simplifies complex analytics, making data more accessible to business users and fostering more informed, proactive decision-making. Key Benefits of AI in Business Intelligence AI brings significant benefits to BI, including: Real-World Applications of AI in BI AI’s integration into BI goes beyond internal efficiency, delivering external value by enhancing customer experiences and driving business growth. Notable applications include: Challenges of AI in Business Intelligence Despite its potential, integrating AI into BI comes with challenges: Best Practices for AI-Driven BI To successfully integrate AI with BI, organizations should: Future Trends in AI and BI AI is expected to augment rather than replace BI, enhancing its capabilities while keeping human expertise central. Emerging trends include: Conclusion AI is revolutionizing BI by transforming it from a retrospective tool into a proactive, real-time decision-making engine. While challenges remain, thoughtful implementation and adherence to best practices can help organizations unlock AI’s full potential in BI. By integrating AI into existing BI workflows, businesses can drive innovation, improve decision-making, and create more agile and data-driven operations. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More

2024 The Year of Generative AI

Was 2024 the Year Generative AI Delivered? Here’s What Happened Industry experts hailed 2024 as the year generative AI would take center stage. Operational use cases were emerging, technology was simplifying access, and general artificial intelligence felt imminent. So, how much of that actually came true? Well… sort of. As the year wraps up, some predictions have hit their mark, while others — like general AI — remain firmly in development. Let’s break down the trends, insights from investor Tomasz Tunguz, and what’s ahead for 2025. 1. A World Without Reason Three years into our AI evolution, businesses are finding value, but not universally. Tomasz Tunguz categorizes AI’s current capabilities into: While prediction and search have gained traction, reasoning models still struggle. Why? Model accuracy. Tunguz notes that unless a model has repeatedly seen a specific pattern, it falters. For example, an AI generating an FP&A chart might succeed — but introduce a twist, like usage-based billing, and it’s lost. For now, copilots and modestly accurate search reign supreme. 2. Process Over Tooling A tool’s value lies in how well it fits into established processes. As data teams adopt AI, they’re realizing that production-ready AI demands robust processes, not just shiny tools. Take data quality — a critical pillar for AI success. Sampling a few dbt tests or point solutions won’t cut it anymore. Teams need comprehensive solutions that deliver immediate value. In 2025, expect a shift toward end-to-end platforms that simplify incident management, enhance data quality ownership, and enable domain-level solutions. The tools that integrate seamlessly and address these priorities will shape AI’s future. 3. AI: Cost Cutter, Not Revenue Generator For now, AI’s primary business value lies in cost reduction, not revenue generation. Tools like AI-driven SDRs can increase sales pipelines, but often at the cost of quality. Instead, companies are leveraging AI to cut costs in areas like labor. Examples include Klarna reducing two-thirds of its workforce and Microsoft boosting engineering productivity by 50-75%. Cost reduction works best in scenarios with repetitive tasks, hiring challenges, or labor shortages. Meanwhile, specialized services like EvenUp, which automates legal demand letters, show potential for revenue-focused AI use cases. 4. A Slower but Smarter Adoption Curve While 2023 saw a wave of experimentation with AI, 2024 marked a period of reflection. Early adopters have faced challenges with implementation, ROI, and rapidly changing tech. According to Tunguz, this “dress rehearsal” phase has informed organizations about what works and what doesn’t. Heading into 2025, expect a more calculated wave of AI adoption, with leaders focusing on tools that deliver measurable value — and faster. 5. Small Models for Big Gains In enterprise AI, small, fine-tuned models are gaining favor over massive, general-purpose ones. Why? Small models are cheaper to run and often outperform their larger counterparts when fine-tuned for specific tasks. For example, training an 8-billion-parameter model on 10,000 support tickets can yield better results than a general model trained on a broad corpus. Legal and cost challenges surrounding large proprietary models further push enterprises toward smaller, open-source solutions, especially in highly regulated industries. 6. Blurring Lines Between Analysts and Engineers The demand for data and AI solutions is driving a shift in responsibilities. AI-enabled pipelines are lowering barriers to entry, making self-serve data workflows more accessible. This trend could consolidate analytical and engineering roles, streamlining collaboration and boosting productivity in 2025. 7. Synthetic Data: A Necessary Stopgap With finite real-world training data, synthetic datasets are emerging as a stopgap solution. Tools like Tonic and Gretel create synthetic data for AI training, particularly in regulated industries. However, synthetic data has limits. Over time, relying too heavily on it could degrade model performance, akin to a diet lacking fresh nutrients. The challenge will be finding a balance between real and synthetic data as AI advances. 8. The Rise of the Unstructured Data Stack Unstructured data — long underutilized — is poised to become a cornerstone of enterprise AI. Only about half of unstructured data is analyzed today, but as AI adoption grows, this figure will rise. Organizations are exploring tools and strategies to harness unstructured data for training and analytics, unlocking its untapped potential. 2025 will likely see the emergence of a robust “unstructured data stack” designed to drive business value from this vast, underutilized resource. 9. Agentic AI: Not Ready for Prime Time While AI copilots have proven useful, multi-step AI agents still face significant challenges. Due to compounding accuracy issues (e.g., 90% accuracy over three steps drops to ~50%), these agents are not yet ready for production use. For now, agentic AI remains more of a conversation piece than a practical tool. 10. Data Pipelines Are Growing, But Quality Isn’t As enterprises scale their AI efforts, the number of data pipelines is exploding. Smaller, fine-tuned models are being deployed at scale, often requiring hundreds of millions of pipelines. However, this rapid growth introduces data quality risks. Without robust quality management practices, teams risk inconsistent outputs, bottlenecks, and missed opportunities. Looking Ahead to 2025 As AI evolves, enterprises will face growing pains, but the opportunities are undeniable. From streamlining processes to leveraging unstructured data, 2025 promises advancements that will redefine how organizations approach AI and data strategy. The real challenge? Turning potential into measurable, lasting impact. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more Health Cloud Brings Healthcare Transformation Following swiftly after last week’s successful launch of Financial Services Cloud, Salesforce has announced the second installment in its series Read more

Read More
AI Leader Salesforce

Sales Leads and Lead Scoring

Sales teams often face a growing pile of leads, making it overwhelming to determine where to focus their energy. How do you prioritize effectively? Lead scoring is the answer. This methodology helps rank prospects based on their likelihood to convert into customers. By mastering lead scoring, sales teams can win more deals and drive revenue growth. What is Lead Scoring? Lead scoring is a strategy used by sales teams to evaluate and rank potential customers by assigning values based on their behavior, demographics, and interactions with the business. This process identifies high-quality leads and determines their likelihood of conversion. By implementing lead scoring, sales teams can focus their time and resources on the most promising prospects. Why is Lead Scoring Important? According to the Salesforce State of Sales Report, sales reps spend 25% of their workweek researching, prospecting, and prioritizing leads. These activities are essential for moving prospects through the sales funnel, yet balancing them with other responsibilities is a challenge. Lead scoring streamlines this process, enabling teams to be more productive by focusing on high-value leads. This improves conversion rates while helping sales leadership better forecast pipelines and revenue. For example, imagine a sales rep for a medical software company trying to close deals with 100 hospital leads. Pursuing them randomly wastes time. However, with lead scoring, they can identify the top 10 most promising leads based on specific criteria, saving time and increasing success rates. Key Components of an Effective Lead Scoring System 1. Data Categories 2. Implicit vs. Explicit Data 3. Quality Data A reliable lead scoring system depends on accurate and up-to-date data. Keeping CRM records current and synced ensures a dependable scoring process. 4. Rule Definition Define criteria based on your most successful customer profiles. Identify patterns of attributes and behaviors that consistently lead to conversion. Similarly, assess unconverted leads to understand traits that signal low potential. 5. Manual vs. Predictive Scoring Steps to Implement Lead Scoring Common Lead Scoring Mistakes to Avoid Tools and Software for Lead Scoring The right tools can make lead scoring more efficient: If you’re short on data, opt for tools that can leverage anonymized external datasets to build your scoring model, transitioning to your own data over time as you scale. Real-World Examples Lead Scoring: Your Path to Higher Conversions By effectively implementing lead scoring, your sales team can prioritize high-value leads, boost conversion rates, and achieve sustainable revenue growth. Whether you choose manual or predictive methods, the key is to focus on what drives success for your business. Take control of your sales pipeline—lead scoring will show you the way. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com