Enterprise AI Archives - gettectonic.com
Building the Intelligent Enterprise Network

Building the Intelligent Enterprise Network

Blueprint for the Agentic AI Era: Building the Intelligent Enterprise Network The Next Frontier: Agentic AI Demands a New Network Paradigm At Cisco Live 2024, company executives unveiled a strategic vision for enterprise AI that goes beyond today’s generative capabilities. As Jeetu Patel, Cisco’s Chief Product Officer, stated: “We’re witnessing one of the most consequential technological shifts in history—the move from reactive AI assistants to autonomous agentic systems that execute complex workflows.” This transition requires fundamental changes to enterprise infrastructure. Where generative AI focused on content creation, agentic AI introduces self-directed software agents that:✅ Operate autonomously across systems✅ Make real-time decisions without human intervention✅ Coordinate multi-step business processes Cisco’s Three Pillars for Agentic AI Success 1. Simplified Network Operations with AI Cisco is unifying its Catalyst and Meraki platforms into a single AI-powered management console featuring: “The future isn’t just AI-assisted ops—it’s agentic ops where AI systems autonomously maintain network health,” noted DJ Sampath, SVP of AI Platform at Cisco. 2. AI-Optimized Hardware Infrastructure New product releases specifically designed for AI workloads:🔹 Catalyst 9800-X Series – 400Gbps switches with AI-optimized ASICs🔹 Silicon One G200 Routers – Built-in NGFW and SD-WAN for distributed AI🔹 Wi-Fi 7 Access Points – 320MHz channels for high-density AI agent traffic 3. Security-Infused Network Fabric Cisco’s “Zero Trust by Design” approach incorporates: Why Networking is AI’s Make-or-Break Factor Patel highlighted a critical insight: “GPUs are only as good as their data pipelines. An idle GPU waiting for packets is like burning cash.” Cisco’s internal benchmarks show: 📉 30% GPU utilization on poorly configured networks📈 92% utilization on Cisco’s AI-optimized infrastructure The difference comes from: The Agentic AI Future: Beyond Hype to Transformation While some dismiss AI as overhyped, Cisco executives argue the true revolution is just beginning: “Agentic AI won’t just answer questions—it will create original insights and solve problems we couldn’t approach before. But this requires rethinking every layer of infrastructure.”— Jeetu Patel, EVP & Chief Product Officer, Cisco Early adopters are already seeing results: Preparing Your Enterprise Cisco recommends three immediate actions: “The companies that win will be those that build networks where AI agents thrive as first-class citizens,” Patel concluded. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
10 AI-Powered Strategies for Smarter Salesforce Lead Management with Agentforce

Salesforce’s AI Transformation

Salesforce’s AI Transformation: 30-50% of Work Now Automated, Says Benioff AI Reshaping the Workforce at Salesforce Salesforce CEO Marc Benioff has revealed that artificial intelligence now handles 30-50% of work across key company functions, marking a significant milestone in enterprise AI adoption. In an interview on The Circuit with Emily Chang, Benioff highlighted how AI is fundamentally changing operations in: The New AI Productivity Standard Benioff’s disclosure reflects an industry-wide shift: Salesforce’s AI-First Strategy The CRM leader is doubling down on AI with:✔ Autonomous customer service tools requiring minimal human oversight✔ Einstein AI platform integrations across sales, service, and marketing clouds✔ “Higher-value work” transition for human employees Historical Context Meets Future Vision Having revolutionized cloud software in the 2000s, Salesforce now positions itself as an AI platform company: The Bigger Picture Benioff’s comments underscore three critical trends: “We’re entering an era where AI handles the predictable so humans can focus on the exceptional,” Benioff noted, framing the change as augmentation rather than replacement. As Salesforce continues weaving AI throughout its platform, the company demonstrates how rapidly emerging technologies are reshaping business operations at scale. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More

Agentforce AI Platform Expands with 200+ Prebuilt Agents

Salesforce has rapidly scaled its Agentforce AI platform, now offering over 200 prebuilt AI agents—a significant leap from the handful available at its October 2024 launch. This expansion addresses a critical challenge for businesses: how to effectively deploy AI automation without extensive technical overhead. Solving the AI Implementation Challenge Enterprises are eager to adopt AI but often struggle with execution. Martin Kihn, SVP of Market Strategy at Salesforce Marketing Cloud, explains: “Customers were excited about AI’s potential but asked, ‘Can I really make this work?’ We took that feedback and built ready-to-use agents that simplify adoption.” Rather than leaving businesses to build AI solutions from scratch, Salesforce’s strategy focuses on preconfigured, customizable agents that accelerate deployment across industries. Proven Business Impact Early adopters of Agentforce are already seeing measurable results: According to Slack’s upcoming Workforce Index, AI agent adoption has surged 233% in six months, with 8,000+ Salesforce clients now using Agentforce. Adam Evans, EVP & GM of Salesforce AI, states: “Agentforce unifies AI, data, and apps into a digital labor platform—helping companies realize agentic AI’s potential today.” Agentforce 3: Scaling AI with Transparency In June 2025, Salesforce launched Agentforce 3, introducing key upgrades for enterprise-scale AI management: Kihn notes: “Most prebuilt agents are a starting point—helping customers overcome hesitation and envision AI’s possibilities.” Once businesses embrace the technology, the use cases become limitless. The Human vs. AI Agent Debate A major challenge for enterprises is how human-like AI agents should appear. Early chatbots attempted to mimic people, but Kihn warns: “Humans excel at detecting non-humans. If an AI pretends to be human, then transfers you to a real agent, it erodes trust.” Salesforce’s Approach: Clarity Over Imitation Kihn illustrates the risk: “Imagine confiding in a ‘sympathetic’ AI agent about a health issue, only to learn it’s not human. That damages trust.” What’s Next for Agentforce? With thousands of AI agents already deployed, Salesforce continues refining the platform. Kihn compares the rapid evolution to “learning to drive an F1 car while racing.” As businesses increasingly adopt AI automation, Agentforce’s library of prebuilt solutions positions Salesforce as a leader in practical, scalable AI deployment. The future? More agents, smarter workflows, and seamless enterprise AI integration. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Ensuring Trust in AI Agent Deployment

Ensuring Trust in AI Agent Deployment

Ensuring Trust in AI Agent Deployment: A Secure Approach to Business Transformation The Imperative for Trustworthy AI Agents AI agents powered by platforms like Agentforce represent a significant advancement in business automation, offering capabilities ranging from enhanced customer service to intelligent employee assistance. However, organizations face a critical challenge in adopting this technology: establishing sufficient trust to deploy AI agents with sensitive data and core business operations. Recent industry research highlights prevalent concerns: Salesforce has maintained trust as its foundational value throughout its 25-year history, adapting this principle across technological evolutions from cloud computing to generative AI. The company now applies this same rigorous approach to AI agent deployment through a comprehensive trust framework. The Four Essential Components of Trusted AI Implementation 1. Comprehensive Data Governance Framework The reliability of AI agents depends fundamentally on data quality and security. The Salesforce platform addresses this through: Data Protection Systems Advanced Data Management Industry experts emphasize that robust AI systems require equally robust data foundations. 2. Secure Integration Architecture AI agents require safe interaction channels with other systems: 3. Built-in Development Safeguards The platform incorporates multiple layers of protection throughout the AI lifecycle: 4. Proprietary Trust Layer A specialized security interface between users and large language models offers: Case Study: Healthcare Transformation with Precina Precina’s implementation demonstrates the platform’s capabilities in a regulated environment. By unifying patient records through Agentforce while maintaining HIPAA compliance, the organization achieved: Precina’s CTO noted that Salesforce’s cybersecurity standards enabled trust equivalent to their own care standards when handling patient information. Enterprise AI: Balancing Innovation and Responsibility Salesforce leadership emphasizes that the company’s quarter-century of experience in secure solutions uniquely positions it to guide enterprises through AI adoption. The integration of unified data management, intuitive development tools, and embedded governance enables organizations to deploy AI solutions that are both transformative and responsible. The recommended implementation approach includes: In the evolving landscape of enterprise AI, Salesforce positions trust not just as a corporate value but as a critical competitive differentiator for organizations adopting these technologies. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AWS Salesforce

AWS Unveils New Agent-Based AI Tools

AWS Unveils New Agent-Based AI Tools, Doubles Down on Developer-Focused Innovation At the AWS Summit New York City 2025, Amazon Web Services (AWS) announced a suite of new agent-based AI tools, reinforcing its commitment to agentic AI—a paradigm shift where AI systems not only generate responses but autonomously take actions. Key Announcements: Why Agentic AI? AWS believes agentic AI is transforming technology by enabling hyper-automation—where AI doesn’t just analyze or summarize but acts on behalf of users. To accelerate adoption, AWS is investing an additional 0M in its Generative AI Innovation Center. “The goal is to help organizations move beyond generative AI to AI that can take action,” said Taimur Rashid, AWS Managing Director of Generative AI Innovation. Industry Reactions: A Developer-First Approach Analysts note AWS is targeting enterprise developers with advanced tooling, differentiating itself from low-code platforms like Salesforce. However, Mark Beccue (Omdia) cautions:“AWS risks missing buyers by focusing too narrowly on developers. They need a clearer end-to-end story.” Partner Perspective: Solving Real-World AI Challenges John Balsavage (A&I Solutions Inc.), an AWS partner, highlights AgentCore Observability as critical for improving AI agent accuracy:“90% accuracy isn’t enough—we need full traceability to reach 100%.” He also praised Kiro, AWS’s new agentic IDE, for simplifying AI prompting:“It generates better requirements, helping developers build more effectively.” AWS Marketplace Expansion & New Integrations AWS also launched: Challenges Ahead While AWS aims to simplify AI development, analysts question: “AWS is trying to be the middle ground between raw AI tools and fully packaged solutions,” said Andersen. “Execution will be key.” The Bottom Line AWS is betting big on agentic AI, arming developers with powerful tools—but success hinges on bridging the gap between technical capability and business impact. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AWS Salesforce

AWS Doubles Down on Agentic AI with New Developer Tools at NYC Summit

At its AWS Summit New York City 2025 conference, Amazon Web Services unveiled a comprehensive suite of agent-based AI tools, signaling its strategic bet on what it calls “the next fundamental shift in enterprise AI.” Core Offerings: Building Blocks for Agentic Systems The cloud leader introduced Amazon Bedrock AgentCore, now in preview, which provides seven foundational services for deploying AI agents at scale: “This represents a step function change in what’s possible for AI agents,” said Swami Sivasubramanian, AWS VP for Agentic AI, during his keynote. The suite supports any AI framework or model while addressing critical enterprise requirements around security and scalability. Complementary AI Infrastructure Updates AWS also announced: The company is backing these technical investments with an additional $100 million for its Generative AI Innovation Center, focusing on hyperautomation use cases. Developer-Centric Approach Faces Mixed Reactions Analysts note AWS’s strategy differs from competitors by targeting professional developers rather than citizen developers: “It’s geared toward the hardcore professional developer,” said Jason Andersen of Moor Insights & Strategy, contrasting AWS’s CLI-heavy approach with Salesforce’s low-code solutions. However, Omdia’s Mark Beccue cautioned: “When talking about agents, you must have the complete story.” He suggested the developer focus might overlook key decision-makers. Ecosystem Expansion Notable ecosystem developments include: Early adopters like A&I Solutions President John Balsavage highlight observability tools as critical for improving agent accuracy beyond current 90% benchmarks. Challenges Ahead While AWS aims to simplify complex AI orchestration, analysts question whether it can: The summit also revealed AWS Academy is providing free certification exam vouchers to over 6,600 students, potentially growing its AI-skilled workforce. Meanwhile, Anthropic (an AWS partner) launched new analytics for its Claude Code assistant. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
ai agent interoperability

Salesforce Unveils Open AI Ecosystem with Agentforce and MCP Integration

Breaking the AI Interoperability Paradox Salesforce is solving the critical challenge facing enterprise AI adoption—how to balance open innovation with enterprise-grade security. With its upcoming Model Context Protocol (MCP) support for Agentforce, Salesforce is creating the first truly open yet governed ecosystem for AI agent collaboration. The $6T Digital Labor Opportunity Current barriers to AI adoption: Salesforce’s solution enables:✔ Native agent interoperability via open standards✔ Enterprise-grade governance baked into every connection✔ 16x faster deployment than DIY approaches AgentExchange: The Trusted Marketplace for AI Agents Key Innovations Partner Ecosystem in Action Partner AI Agent Capabilities Enabled AWS Unstructured data processing across Bedrock, Aurora DBs, and multimedia Box Intelligent contract analysis and automated workflow triggers Google Cloud Location-aware AI combining Maps, generative models, and transactional data PayPal End-to-end agentic commerce from product listing to dispute resolution Stripe Real-time payment operations and subscription management WRITER Compliant content generation within Salesforce workflows The Salesforce Advantage “With MCP, we’re creating a new category of agent-first businesses,” says Brian Landsman, CEO of AppExchange. “Partners build once and connect everywhere—without the security tradeoffs of traditional integrations.” Enterprise Benefits The Future of Digital Labor This announcement marks a pivotal shift in enterprise AI: Available in pilot July 2024, Salesforce’s MCP integration positions Agentforce as the hub for the next generation of enterprise AI—where security and innovation coexist to unlock the full trillion potential of digital labor. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Why AI Won't Kill SaaS

Essential Framework for Enterprise AI Development

LangChain: The Essential Framework for Enterprise AI Development The Challenge: Bridging LLMs with Enterprise Systems Large language models (LLMs) hold immense potential, but their real-world impact is limited without seamless integration into existing software stacks. Developers face three key hurdles: 🔹 Data Access – LLMs struggle to query databases, APIs, and real-time streams.🔹 Workflow Orchestration – Complex AI apps require multi-step reasoning.🔹 Accuracy & Hallucinations – Models need grounding in trusted data sources. Enter LangChain – the open-source framework that standardizes LLM integration, making AI applications scalable, reliable, and production-ready. LangChain Core: Prompts, Tools & Chains 1. Prompts – The Starting Point 2. Tools – Modular Building Blocks LangChain provides pre-built integrations for:✔ Data Search (Tavily, SerpAPI)✔ Code Execution (Python REPL)✔ Math & Logic (Wolfram Alpha)✔ Custom APIs (Connect to internal systems) 3. Chains – Multi-Step Workflows Chain Type Use Case Generic Basic prompt → LLM → output Utility Combine tools (e.g., search → analyze → summarize) Async Parallelize tasks for speed Example: python Copy Download chain = ( fetch_financial_data_from_API → analyze_with_LLM → generate_report → email_results ) Supercharging LangChain with Big Data Apache Spark: High-Scale Data Processing Apache Kafka: Event-Driven AI Enterprise Architecture: text Copy Download Kafka (Real-Time Events) → Spark (Batch Processing) → LangChain (LLM Orchestration) → Business Apps 3 Best Practices for Production 1. Deploy with LangServe 2. Debug with LangSmith 3. Automate Feedback Loops When to Use LangChain vs. Raw Python Scenario LangChain Pure Python Quick Prototyping ✅ Low-code templates ❌ Manual wiring Complex Workflows ✅ Built-in chains ❌ Reinvent the wheel Enterprise Scaling ✅ Spark/Kafka integration ❌ Custom glue code Criticism Addressed: The Future: LangChain as the AI Orchestration Standard With retrieval-augmented generation (RAG) and multi-agent systems gaining traction, LangChain’s role is expanding: 🔮 Autonomous Agents – Chains that self-prompt for complex tasks.🔮 Semantic Caching – Reduce LLM costs by reusing past responses.🔮 No-Code Builders – Business users composing AI workflows visually. Bottom Line: LangChain isn’t just for researchers—it’s the missing middleware for enterprise AI. “LangChain does for LLMs what Kubernetes did for containers—it turns prototypes into production.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
PepsiCo Pioneers Enterprise AI with Salesforce Agentforce

PepsiCo Pioneers Enterprise AI with Salesforce Agentforce

A Global First: PepsiCo Deploys Salesforce Agentforce at Scale PepsiCo has made history as the first major food and beverage company to implement Salesforce Agentforce AI agents across its global operations. This landmark partnership signals a transformative shift in how enterprises leverage AI for customer engagement, sales, and supply chain optimization. The announcement follows Salesforce’s Agentforce World Tour, where demonstrations in Tel Aviv, London, Zurich, Seoul, and Melbourne drew thousands of business leaders eager to explore AI’s potential. Now, with PepsiCo’s adoption, Agentforce moves from concept to real-world enterprise deployment. Why PepsiCo Chose Agentforce PepsiCo—a $92 billion market leader—isn’t just experimenting with AI; it’s reinventing its operations. The company will deploy Agentforce across: ✅ Customer Support – AI-powered, hyper-personalized interactions✅ Sales Optimization – Real-time inventory insights via Consumer Goods Cloud✅ Data-Driven Decision Making – Unified customer profiles via Salesforce Data Cloud Ramon Laguarta, PepsiCo Chairman & CEO, explains: “AI is reshaping our business in ways that were once unimaginable. This collaboration unlocks smarter decision-making, fuels innovation, and powers sustainable growth.” The AI + Human Collaboration Model Salesforce and PepsiCo emphasize augmentation over automation—where AI agents enhance, not replace, human roles. Marc Benioff, Salesforce CEO, highlights the vision: “PepsiCo is reimagining work by uniting human expertise with AI intelligence. This is the future of digital labor.” Athina Kanioura, PepsiCo’s Chief Strategy Officer, adds: With Agentforce, we’re building an enterprise where humans and AI collaborate—driving efficiency, resilience, and readiness for the future.” Addressing AI’s Impact on Jobs At the London Agentforce Tour, Zahra Bahrololoumi (Salesforce UK & Ireland CEO) clarified: “Our goal is to boost human productivity, not eliminate jobs. Some tasks are best handled by AI, others require human judgment.” A Blueprint for Enterprise AI Adoption PepsiCo’s deployment is a watershed moment for AI in consumer goods: 🔹 Scale: Impacts billions of daily product interactions across 200+ countries🔹 Integration: Combines Data Cloud, Consumer Goods Cloud, and Agentforce AI🔹 Innovation: Moves beyond automation to AI-driven decision intelligence What’s Next? If successful, PepsiCo’s implementation could accelerate global AI adoption—proving that enterprise-ready AI isn’t just theoretical. The Bigger Picture: AI’s Role in the Future of Business PepsiCo’s bold move underscores a critical shift: Will your business be next? 📈 Explore how Agentforce can transform your operations – Contact Salesforce AI Experts Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Salesforce Launches Agentforce 3

Salesforce Launches Agentforce 3

Salesforce Launches Agentforce 3: The Next Evolution of Enterprise AI Agents Transforming Businesses with AI-Powered Digital Workforces Salesforce has unveiled Agentforce 3, a major upgrade to its AI agent platform designed to help enterprises build, optimize, and scale hybrid workforces combining AI agents and human employees. At the heart of the update is Agentforce Studio, a centralized hub where businesses can:✔ Design AI agents for specific tasks✔ Test interactions in real-world scenarios✔ Optimize performance with advanced analytics “We’ve moved past just deploying AI—now we’re refining it,” says Jayesh Govindarajan, Salesforce’s EVP of AI & Engineering. Solving the “Step Two” Problem: Making AI Agents Smarter & More Reliable While 3,000+ businesses are already building AI agents on Salesforce, a critical challenge emerged: How do you maintain and improve AI performance after deployment? Key Upgrades in Agentforce 3 🔹 Real-Time Observability – Track AI and human interactions via Agentforce Command Center🔹 Web Search & Citations – AI agents can now pull external data (with source transparency)🔹 Pre-Built Industry Tools – Accelerate deployment with 100+ ready-made AI actions🔹 Multi-LLM Support – Choose between OpenAI, Anthropic’s Claude, or Google Gemini🔹 Regulatory Compliance – FedRAMP High Authorization enables public sector use Real-World Impact: AI Agents in Action 1. OpenTable 2. 1-800Accountant 3. UChicago Medicine Pricing & Global Expansion The Future of AI at Work “Agentforce isn’t just automation—it’s a digital labor platform,” says Adam Evans, Salesforce’s AI lead. With open standards (MCP, A2A) and 20+ partner integrations (Stripe, Box, Atlassian), businesses can:✔ Scale AI without custom code✔ Maintain full governance✔ Continuously optimize performance The bottom line? AI agents are no longer experimental—they’re essential workforce multipliers. Companies that master them will outpace competitors in efficiency and customer experience. “With Agentforce, we’re gaining a holistic view of operations—enabling smarter decisions across every market.”—Athina Kanioura, Chief Strategy Officer, PepsiCo Next step for businesses? Start small, measure rigorously, and scale fast. The AI agent revolution is here. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
AI Agents Are the Future of Enterprise

Persona-Centric Intelligence at Scale

The CIO’s Playbook for AI Success: Persona-Centric Intelligence at Scale The New Imperative: AI That Works the Way Your Teams Do In today’s digital-first economy, AI isn’t just a tool—it’s the operating system of modern business. But too many enterprises treat AI as a one-size-fits-all solution, leading to low adoption, wasted investment, and fragmented value. The winning strategy? Persona-based AI—designing intelligence that adapts to how different roles actually work. From Siloed to Strategic: The Evolution of Enterprise AI The Problem With Platform-Locked AI Most organizations deploy AI in disconnected pockets—Salesforce for sales, Workday for HR, SAP for finance. This creates:🔴 Duplicated efforts (multiple AI models doing similar tasks)🔴 Inconsistent insights (CRM AI says one thing, ERP AI another)🔴 Vendor lock-in (intelligence trapped in specific systems) The Solution: System-Agnostic Intelligence Forward-thinking CIOs are shifting to centralized AI “as a service”—decoupling intelligence from individual platforms to power seamless, cross-functional workflows. Example: 4 Pillars of a Persona-Based AI Strategy 1. Role-Specific Intelligence AI should augment, not disrupt existing workflows:🔹 Sales Reps: Real-time deal coaching, automated lead scoring🔹 Customer Support: AI-generated case summaries, sentiment-triggered escalations🔹 HR Teams: Smart resume screening, personalized onboarding bots Real-World Impact: *”Salesforce’s Agentforce cuts rep ramp time by 40% with AI role-plays tailored to each rep’s deal pipeline.”* 2. Generative AI That Works Behind the Scenes GenAI isn’t just for drafting emails—it’s automating high-value workflows:✔ Marketing: Dynamically localizing campaign creatives✔ Legal: Auto-redlining contracts against playbooks✔ IT: Converting trouble tickets into executable scripts Key Consideration: Guardrails matter—implement strict controls for data privacy and IP protection. 3. Edge AI for Real-Time Action Smart Cities Example:📍 Problem: Mumbai’s traffic gridlock costs $22B/year in lost productivity📍 AI Solution: Edge-powered cameras + sensors dynamically reroute vehicles without cloud latency📍 Outcome: 30% faster emergency response times Enterprise Use Cases: 4. Intelligent Automation: The Silent Productivity Engine Combining RPA + AI automates complex processes end-to-end:🔸 Finance: Invoice matching → fraud detection → payment approvals🔸 Supply Chain: Demand forecasting → autonomous PO generation🔸 IT: Self-healing network alerts → auto-remediation The CIO Action Plan 1. Audit Existing AI Deployments 2. Build a Central AI Layer 3. Start With High-Impact Personas Prioritize roles where AI drives measurable ROI:🎯 Field Service Techs: AR-guided repairs + parts forecasting🎯 Account Managers: Churn risk alerts + upsell scripts 4. Measure What Matters Track persona-specific metrics: The Future Is Adaptive The next frontier? “Living Intelligence”—AI that evolves with user behavior: *”By 2026, persona-driven AI will boost enterprise productivity by 35%.”*—Gartner “The best AI doesn’t feel like AI—it feels like a smarter way to work.” Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Mulesoft

Salesforce’s MuleSoft Paves the Way for Autonomous AI Agents in Enterprise IT

AI agents are coming to the enterprise—and MuleSoft is building the roads they’ll run on. As AI agents emerge as the next evolution of workplace automation, MuleSoft—Salesforce’s integration powerhouse—is rolling out new standards to bring order to the chaos. The company recently introduced two key protocols, Model Context Protocol (MCP) and Agent2Agent (A2A), designed to help AI agents operate autonomously across enterprise systems while maintaining security and oversight. This builds on Salesforce’s Agentforce toolkit, now in its third iteration, which provides developers with the building blocks to create AI agents within the Salesforce ecosystem. The latest update adds a centralized control hub and support for MCP and A2A—two emerging standards that could help AI agents work together seamlessly, even when built by different vendors. Why MuleSoft? The Missing Link for AI Agents MuleSoft, acquired by Salesforce in 2018, originally specialized in connecting siloed enterprise systems via APIs. Now, it’s applying that same expertise to AI agents, ensuring they can access data, execute tasks, and collaborate without requiring custom integrations for every new bot. The two new protocols serve distinct roles: But autonomy requires guardrails. MuleSoft’s Flex Gateway acts as a traffic controller, determining which agents can access what data, what actions they’re permitted to take, and when to terminate an interaction. This lets enterprises retrofit existing APIs for agent use without overhauling their infrastructure. How AI Agents Could Reshape Workflows A typical use case might look like this: This kind of multi-agent collaboration could automate complex workflows—but only if the agents play by the same rules. The Challenge: Agents Are Still Unpredictable While the vision is compelling, AI agents remain more promise than product. Unlike traditional software, agents interpret, learn, and adapt—which makes them powerful but also prone to unexpected behavior. Early adopters like AstraZeneca (testing agents for research and sales) and Cisco Meraki (using MuleSoft’s “AI Chain” to connect LLMs with partner portals) are still in experimental phases. MuleSoft COO Ahyoung An acknowledges the hesitation: many enterprises are intrigued but wary of the risks. Early implementations have revealed issues like agents stuck in infinite loops or processes that fail to terminate. To ease adoption, MuleSoft is offering training programs, entry-level pricing for SMBs, and stricter security controls. The Bigger Picture: Who Controls the Interface Controls the Market Salesforce isn’t trying to build the best AI agent—it’s building the platform that connects them all. Much like early cloud providers didn’t just sell storage but the tools to manage it, MuleSoft aims to be the orchestration layer for enterprise AI. The two protocols are set for general release in July. If successful, they could help turn today’s fragmented AI experiments into a scalable ecosystem of autonomous agents—with MuleSoft at the center. Key Takeaways: ✅ MuleSoft’s new protocols (MCP & A2A) standardize how AI agents interact with systems and each other.✅ Flex Gateway provides governance, ensuring agents operate within defined boundaries.✅ Early use cases show promise, but widespread adoption hinges on reliability and security.✅ Salesforce is positioning MuleSoft as the “operating system” for enterprise AI agents. The bottom line: AI agents are coming—and MuleSoft is laying the groundwork to make them enterprise-ready. Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
Agentforce to the Team

How Agentforce 2.0’s New Model Changes the Game

Salesforce Reinvents AI Pricing: How Agentforce 2.0’s New Model Changes the Game From Conversations to Actions: Salesforce’s Bold Pricing Shift When Salesforce launched Agentforce 2.0 in October 2024, it raced ahead of competitors like Microsoft, SAP, and ServiceNow, positioning itself as the go-to platform for enterprise AI agents. The initial -per-conversation model worked well for simple use cases—like AI handling frontline customer chats—but as businesses experimented further, limitations emerged. Now, Salesforce is rolling out a game-changing update: action-based pricing. The New Pricing Model: Pay for What the AI Actually Does Bill Patterson, EVP of Corporate Strategy at Salesforce, explains: “We’re moving to an action-oriented model—charging for the actual work AI agents perform, not just conversations.” Key Features of the New Pricing: ✅ Flex Credits – Universal currency for AI actions across Sales, Service, and Marketing Clouds✅ $0.10 per action (20 credits) – Only pay when the AI completes a task✅ No hidden fees – Unlike hyperscalers, no separate charges for compute, storage, or LLM calls Example: “Think of it like electricity—you don’t pay differently for your fridge vs. your stove. Flex Credits power all AI agents uniformly.”— Bill Patterson Two Major Additions: Flex Agreement & Digital Wallet 1. Flex Agreement: Convert Unused Licenses into AI Credits Many companies overbuy CRM licenses during hiring surges. Now, they can trade unused licenses into Flex Credits for AI agents. Why It Matters: 2. Digital Wallet: Control & Monitor AI Spending A new centralized dashboard lets companies:📊 Track AI agent usage in real-time🛑 Set spending limits (e.g., cap expensive agents)📈 Measure ROI per agent “This isn’t about nickel-and-diming customers—it’s about fair, scalable pricing that grows with AI adoption.” How Does Salesforce Compare to Competitors? Pricing Model Salesforce Hyperscalers (AWS, Azure) AI Startups Basis Actions completed Compute + microservices “Employee replacement” flat fees Flexibility ✅ Universal Flex Credits ❌ Complex tiered pricing ❌ Rigid per-agent costs Transparency ✅ Clear per-action cost ❌ Hidden API/LLM fees ✅ Fixed but inflexible Salesforce’s edge? Agentforce One: The Next Evolution Coming in July 2025, Salesforce is rebranding Einstein One as Agentforce One—a bundled AI package for Sales & Service Cloud users. What’s Included? Goal: Lower the barrier to entry and accelerate AI adoption across Salesforce’s 150,000+ customers. Will This Boost Agentforce Adoption? ✅ 8,000 companies already use Agentforce (fastest-growing Salesforce product ever).✅ Flex Credits remove cost uncertainty.✅ Digital Wallet enables better budgeting. But… 8,000 is just 5% of Salesforce’s customer base. The new pricing could be the push needed to unlock mass adoption. The Bottom Line Salesforce’s pricing shift isn’t just about cost—it’s about trust. By moving to action-based billing, they’re ensuring customers:✔ Only pay for valuable AI work✔ Can scale AI across departments✔ Gain full visibility into ROI What’s next? As AI costs normalize, Salesforce’s flexible, transparent model could set the industry standard. 🚀 Ready to explore Agentforce?Contact us today! “This is the pricing model AI-powered businesses have been waiting for.”— CIO, Fortune 500 Salesforce Customer Like Related Posts AI Automated Offers with Marketing Cloud Personalization AI-Powered Offers Elevate the relevance of each customer interaction on your website and app through Einstein Decisions. Driven by a Read more Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more

Read More
gettectonic.com