Salesforce AI Archives - gettectonic.com

Salesforce and Singapore Airlines

Singapore Airlines (SIA), a Headline Partner of the APEX FTE Asia Expo in Singapore on 11-12 November 2025, is teaming up with Salesforce to co-develop cutting-edge Artificial Intelligence (AI) solutions for the airline industry. This collaboration, centered at the Salesforce AI Research hub in Singapore, aims to deliver greater value and innovative benefits to the sector. As part of this initiative, SIA is integrating Salesforce’s Agentforce, Einstein in Service Cloud, and Data Cloud into its customer case management system, enabling the airline to provide more consistent, personalised, and efficient service to its customers. SIA will deploy Agentforce, an AI system that uses autonomous agents to handle specific tasks, streamlining customer service operations. This allows SIA’s customer service representatives to focus on delivering enhanced, personalised attention during customer interactions. Data Cloud, Salesforce’s hyperscale data engine, powers Agentforce by consolidating relevant data, enabling AI agents to provide customer service representatives with tailored advice and solutions, further enhancing the customer experience. Mr. Goh Choon Phong, Chief Executive Officer of Singapore Airlines, highlighted the airline’s commitment to innovation: “As the world’s leading digital airline, Singapore Airlines is dedicated to investing in and leveraging advanced technologies to enhance customer experiences, improve operational efficiencies, drive revenue generation, and boost employee productivity. Over the past 18 months, the SIA Group has been an early adopter of Generative AI solutions, developing over 250 use cases and implementing around 50 initiatives across our end-to-end operations. Salesforce is a pioneer in Agentic AI, and integrating Agentforce, Einstein in Service Cloud, and Data Cloud into our customer case management system marks the first step in our collaboration. Together, we will co-create AI solutions that drive meaningful and impactful change, setting new standards for service excellence in the airline industry.” In addition to Agentforce, SIA will utilise Einstein Generative AI capabilities within Service Cloud to summarise customers’ previous interactions with the airline. This feature provides customer service representatives with actionable insights, enabling them to better understand and anticipate customer needs, tailor solutions, and reduce average response times. The result is a more efficient, proactive, and personalised customer service experience. Marc Benioff, Chair and Chief Executive Officer of Salesforce, emphasised the transformative potential of this partnership: “The rise of digital labour, powered by autonomous AI agents, is not just reimagining the customer experience – it’s transforming business. We’re thrilled to partner with Singapore Airlines, a trailblazer in this AI revolution, to elevate their already outstanding customer service to unprecedented heights, augment their employees, and collaborate on groundbreaking AI solutions for the airline industry. With our deeply unified digital labour platform, we’re bringing humans together with trusted, autonomous AI agents, unlocking new levels of productivity, innovation, and growth.” This collaboration between Singapore Airlines and Salesforce represents a significant step forward in the airline industry’s adoption of AI-driven solutions. By combining SIA’s industry expertise with Salesforce’s innovative AI technologies, the partnership aims to redefine customer service standards, enhance operational efficiency, and set a new benchmark for excellence in the aviation sector. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
ViUniT: A Breakthrough AI Framework for Reliable Visual Unit Testing in AI

ViUniT: A Breakthrough AI Framework for Reliable Visual Unit Testing in AI

Salesforce AI, in collaboration with the University of Pennsylvania, has introduced ViUniT (Visual Unit Testing)—a pioneering AI framework designed to improve the reliability of visual programs by automatically generating unit tests. By leveraging large language models (LLMs) and diffusion models, ViUniT enhances the logical correctness of visual reasoning systems, ensuring AI models produce accurate and justifiable results. The Challenge: Ensuring Logical Soundness in Visual Programs Visual programming has gained prominence in AI, particularly in computer vision, object detection, image captioning, and visual question answering (VQA). These systems excel at modularizing complex reasoning tasks, but their correctness remains a critical challenge. Unlike traditional text-based programming, where syntax errors and logic flaws can be easily debugged, visual programs often produce seemingly correct answers for incorrect reasons, making them unreliable. Recent studies highlight this issue: To address these challenges, systematic testing and verification frameworks are essential to ensure visual programs function as intended. Introducing ViUniT: A New Approach to Visual Program Reliability ViUniT is designed to systematically evaluate visual programs by generating unit tests in the form of image-answer pairs. Unlike conventional unit testing, which is primarily used for text-based applications, ViUniT focuses on: How ViUniT Works Key Applications of ViUniT ViUniT introduces four major innovations to improve model reliability: Performance & Key Findings ViUniT was extensively tested on three benchmark datasets: GQA, SugarCREPE, and Winoground, demonstrating significant improvements in model accuracy and reliability. 🔹 ViUniT improved model accuracy by 11.4% on average across datasets.🔹 Reduced logically flawed programs by 40%, ensuring models reason correctly.🔹 Enabled open-source 7B models to outperform GPT-4o-mini by 7.7%.🔹 ViUniT-based re-prompting improved performance by 7.5 percentage points compared to error-based re-prompting.🔹 Reinforcement learning strategies within ViUniT outperformed correctness-based reward strategies by 1.3%.🔹 Successfully identified unreliable programs, enhancing answer refusal strategies and reducing false confidence. Conclusion: A New Standard for Visual AI Testing ViUniT marks a significant step forward in AI-driven unit testing for visual programs, ensuring that AI models not only provide correct answers but also follow logically sound reasoning. By integrating LLMs, diffusion models, and reinforcement learning, this framework enhances trust, accuracy, and reliability in visual AI systems. As AI continues to evolve, ViUniT sets a new standard for validating and refining visual reasoning models, paving the way for more dependable AI-driven applications. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Rise of AI Agents

The Rise of AI Agents

The Rise of AI Agents: Salesforce’s Vision for a New Era of Business In just three months, more than 1,000 companies have deployed Salesforce AI agents, unlocking capabilities “they’ve never seen before” and setting the stage for game-changing business outcomes, according to CEO Marc Benioff. That’s a bold prediction—even for a visionary like Benioff, whose track record speaks for itself. But throughout our recent 25-minute conversation for the Cloud Wars CEO Outlook 2025 series, Benioff remained unwavering in his optimism about the AI-powered future. Agentic AI: The Force Driving Business Transformation According to Benioff, AI agents represent the next wave of business transformation, redefining how companies operate, innovate, and compete. “I’ve never been more excited about technology—this is an incredible moment in time,” Benioff said. He described AI agents as the bridge to a future where businesses engage with customers in ways previously thought possible only in science fiction. These AI-driven systems will help organizations operate at lower costs while improving customer relationships and key performance metrics. But Salesforce isn’t just selling this vision to customers—it’s living it. Benioff shared firsthand insights into how the company is leveraging AI to optimize its own operations, revealing lessons that could reshape how enterprises think about productivity and workforce planning. Digital Labor: A Multi-Trillion-Dollar Opportunity One of the most striking takeaways from our conversation was Salesforce’s approach to what Benioff calls “digital labor.” “For 25 years, Salesforce has helped businesses manage data. Now, we’re creating digital workers—AI agents that unlock entirely new ways to operate,” he said. This shift is already making an impact. Salesforce’s Agentforce AI now handles the bulk of the company’s customer support, transforming how its 9,000 service agents manage 36,000 weekly support inquiries: As a result, Salesforce is reallocating 2,000 support professionals to other roles—just one example of how AI is reshaping workforce dynamics. A Radical Rethink: No New Developers in 2025 Perhaps the most surprising revelation? Salesforce is pausing hiring for software engineers in 2025. Benioff explained that despite doubling its engineering team over the past five years, AI has driven a 30% increase in productivity. Rather than hiring more developers, Salesforce is leaning into AI-powered automation to accelerate software development. This shift raises fundamental questions about the future of work: Salesforce vs. Microsoft: Competing Visions for AI Agents AI agents are reshaping enterprise technology, but vendors have differing approaches. Benioff made it clear that Salesforce is taking a unique path—one he believes will ultimately lead the industry. Unlike Microsoft, which is deeply integrating AI within its core applications, Salesforce sees agents as an evolution of its CRM foundation, leveraging the vast 230-petabyte data ecosystem it manages for customers. “The businesses that are closest to their data will win,” Benioff said. “And we’re going to deliver capabilities that our customers have never seen before—ones that will thrill them out of their minds.” The Future: A Billion AI Agents As enterprises race to adopt AI, Benioff predicts an explosion in AI agent deployment. “In the next 12 months, we’ll see thousands of companies deploying up to a billion AI agents. And Salesforce will be the absolute leader in agentic technology for the enterprise,” he said. Benioff’s vision is clear: AI agents aren’t just an enhancement—they are the next frontier of business. And companies that embrace them will lead the way into a new era of efficiency, innovation, and growth. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Agentforce Redefines Generative AI

Agentforce and Commerce Cloud

SharkNinja, a global product design and technology company, is implementing Salesforce’s Agentforce and Commerce Cloud to enhance its global customer service operations. The company, known for its Shark and Ninja brands of household products, aims to scale support across more than 30 markets using autonomous agents. Agentforce will create an AI-powered digital workforce available 24/7 to assist customers with buying processes, product inquiries, troubleshooting, and returns management. This implementation will allow human agents to focus on high-impact interactions while providing tailored support based on customer data and purchase history. The integration of Commerce Cloud will enable SharkNinja to consolidate customer data from multiple sources into a unified view, facilitating more personalized shopping experiences and better tracking of customer engagement across their global customer base. Salesforce (NYSE: CRM), the world’s #1 AI CRM, today announced that SharkNinja, a global product design and technology company, is implementing Agentforce and other Salesforce products, including Commerce Cloud, to drive global growth by scaling its personalized customer service approach with autonomous agents. SharkNinja is a global leader in indoor and outdoor household products, transforming how people cook, clean, and live in homes around the world. As the innovation powerhouse behind two multi-billion-dollar brands — Shark and Ninja — SharkNinja is renowned for its diversified portfolio of cutting-edge products, including Shark vacuum cleaners and beauty tools, as well as Ninja kitchen appliances, such as blenders, air fryers, and ice cream makers. To support its rapid, global growth, SharkNinja is embracing solutions that will scale support and service more efficiently across more than 30 markets while delivering a seamless consumer shopping experience. Agentforce, a new layer on the Salesforce Platform, will enable SharkNinja to easily build and deploy AI agents that can autonomously take action across any business function. With Agentforce, SharkNinja will have an always-on, digital workforce available 24/7 to guide customers through the buying process, answer product questions, troubleshoot issues, and manage returns — streamlining human agent workloads so they can focus on meaningful, high-impact interactions. “Innovation is the driver behind every product SharkNinja creates across our vast portfolio, so it was really important to find a tool that could give us the capabilities needed to be just as innovative across every consumer interaction,” said Velia Carboni, CIO, SharkNinja. “We believe Agentforce is this key to helping us build a community that keeps consumers coming back as we continue to grow and develop new problem-solving innovations that positively impact people’s lives in homes around the world.” “SharkNinja prioritizes quality, innovation, and an exceptional customer experience,” said Adam Evans, EVP & GM of Salesforce AI Platform. “By integrating customer data with service and support functions, Agentforce enables SharkNinja to deliver an exceptional experience at every touchpoint — building customer loyalty and keeping them coming back time and time again.” Agentforce will also help SharkNinja enhance brand loyalty through tailored support interactions that deliver targeted solutions and recommendations based on insights from customer data from previous purchases and service history. SharkNinja will also leverage Commerce Cloud, enabling the company to consolidate customer data from multiple sources into a single, unified view. This integration will enable the delivery of more personalized shopping experiences for each customer. At the same time, having unified touchpoints will allow SharkNinja to more effectively track engagement across its global customer base. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
The Future of AI in Salesforce

The Future of AI in Salesforce

The Future of AI in Salesforce: Smarter, Predictive, and Deeply Integrated Artificial Intelligence (AI) is revolutionizing the Salesforce ecosystem, reshaping customer interactions, automating workflows, and driving revenue growth. As we move into 2025 and beyond, AI within Salesforce will become even more intelligent, predictive, and seamlessly embedded across the platform. Let’s explore the key advancements defining the next era of AI in Salesforce. 1. Next-Gen Einstein AI: A Smarter CRM Assistant Salesforce Einstein continues to evolve, equipping businesses with powerful AI-driven capabilities: 2. AI-Powered Revenue Intelligence & Forecasting AI is transforming revenue intelligence, helping sales teams make data-driven decisions: 3. AI-Driven Sales & Service Automation AI-powered automation will streamline workflows and improve efficiency: 4. Hyper-Personalization with AI & Data Cloud Salesforce Data Cloud and AI will power personalized customer experiences at scale: 5. AI-Optimized Lead Generation & Marketing Automation AI will continue to enhance lead generation and marketing strategies: 6. AI & Low-Code/No-Code Innovation Salesforce is democratizing AI with accessible low-code and no-code tools: 7. Ethical AI & Governance: Building Trust in AI Salesforce remains committed to ethical, transparent, and bias-free AI: Conclusion As AI becomes deeply embedded in every Salesforce cloud, businesses will experience faster automation, smarter decision-making, and hyper-personalized customer engagement. From AI-powered sales forecasting to generative AI-driven content, the future of Salesforce AI is set to redefine CRM strategies in 2025 and beyond. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Generative AI Prompts with Retrieval Augmented Generation

AI Prompts for Small Businesses

How AI Prompts Can Help Small Businesses Win More Customers Getting new customers can be a challenge for small businesses. You may be eager to explore artificial intelligence (AI) but unsure where to begin. The answer? AI prompts—a simple yet powerful way to automate and optimize sales efforts. This guide explores five AI prompts designed to enhance your sales process, from personalized outreach to lead generation. Let’s dive in! What Is an AI Prompt? An AI prompt is a specific instruction or question given to an AI tool to generate responses or perform tasks. The more precise the prompt, the better the results. For small businesses, AI prompts can: Why AI Matters for Small Business Sales AI is a game-changer for small business sales. It provides insights into customer behavior, streamlines processes, and enhances decision-making. Unlike enterprise AI applications, SMB-focused AI helps automate repetitive tasks, allowing sales teams to focus on relationship-building and closing deals. A strong starting point? AI-powered CRM tools. Integrating AI with your CRM unlocks predictive analytics, automation, and smarter customer engagement. In fact, small businesses using Salesforce AI have reported: AI Prompts vs. Traditional Sales Methods AI-Powered Prompts Traditional Sales Methods Automated lead generation Manual lead hunting Personalized sales emails Generic mass emails Instant follow-ups Delayed responses AI-generated sales scripts Improvised pitches Smart objection handling Reactive responses 5 AI Prompts to Supercharge Your Sales 1. Lead Generation Prompt Objective: Identify potential leads quickly. AI Prompt: “Generate a list of 10 potential leads based on [industry, location, company size].” How It Helps: AI scans data to find ideal customers, saving time and improving outreach accuracy. Example Output: 2. Sales Email Drafting Prompt Objective: Craft compelling emails that boost click rates. AI Prompt: “Write a persuasive sales email to [target] highlighting our [product/service] and inviting them to a demo.” How It Helps: AI generates tailored emails that resonate with prospects, improving open and response rates. Example Output: Subject: Transform Your Operations with Our CRMHi [First Name],I noticed your business is growing rapidly in [industry]. Our CRM can streamline operations and boost efficiency. Let’s schedule a quick demo this week—let me know your availability![Your Name] 3. Customer Follow-Up Prompt Objective: Keep potential customers engaged. AI Prompt: “Write a follow-up email to [customer] who expressed interest in our [product/service], including a gentle reminder and any new updates.” How It Helps: AI ensures timely, professional follow-ups, maintaining engagement without being pushy. Example Output: Subject: Following Up on Our ConversationHi [First Name],I wanted to check in on our discussion about [product/service]. We recently introduced [new feature], which could be a great fit for you. Let me know if you’d like to reconnect.Thanks,[Your Name] 4. Sales Pitch Script Prompt Objective: Develop a persuasive pitch. AI Prompt: “Create a 2-minute sales pitch for our [product/service] emphasizing key benefits and unique selling points.” How It Helps: A well-structured pitch increases confidence and improves conversion rates. Example Output: “Hello! My name is [Your Name] from [Company Name]. We specialize in [product/service]. What sets us apart is [unique benefit]. Our solution has helped companies like yours achieve [specific results]. Interested in learning more?” 5. Objection Handling Prompt Objective: Overcome sales objections effectively. AI Prompt: “List two common objections about our [product/service] and provide persuasive responses.” How It Helps: Prepares sales teams with effective responses to common objections, increasing deal closures. Example Output: Objection: “It’s too expensive.”Response: “Our solution pays for itself within months through increased efficiency.” Objection: “We’re happy with our current provider.”Response: “That’s great! Many of our clients felt the same until they saw how much more they could achieve with our features.” Unlock Growth with AI-Powered Sales Using AI prompts for sales isn’t just an experiment—it’s a proven way to boost efficiency, personalization, and success. Businesses that embrace AI-driven strategies will outpace competitors and scale faster. Ready to transform your sales game? Start using AI prompts today! Contact Tectonic. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
My Service Journey is Here

Salesforce Service Assistant Now Generally Available

Salesforce Service Assistant Now Generally Available in Service Cloud Salesforce has officially launched Service Assistant in Service Cloud, bringing AI-powered agent guidance to customer service teams. The assistant creates step-by-step action plans to help agents resolve queries efficiently by analyzing intent, case history, and customer context. Previously known as Salesforce Service Planner, the solution entered a pilot phase in October 2024 and is now live just four months later. Enhancing Accuracy with Data Cloud Integration To maximize accuracy, Salesforce recommends integrating Service Assistant with Data Cloud and the contact center knowledge base. This connection enables the assistant to access critical business processes and customer history across service, sales, marketing, and more. Key Features of Service Assistant Beyond real-time agent guidance, Service Assistant introduces two standout capabilities: This continuous learning cycle improves agent proficiency, enhances customer satisfaction, and reduces Average Handling Time (AHT). What’s Next for Service Assistant? Despite these capabilities, Salesforce plans to further enhance Service Assistant. In a recent webinar, Kevin Qi, Associate Product Manager at Salesforce, revealed upcoming enhancements in the Summer ’25 release (June 2025): “The next phase of Service Assistant involves actionable plans. It will not only guide service reps but also automate steps like looking up orders and checking eligibility to speed up case resolution.” Beyond summer, Salesforce aims to make Service Assistant more adaptive, supporting additional channels such as messaging and voice while dynamically adjusting to case context changes. Expanding AI & Agentforce Capabilities in Service Cloud Alongside Service Assistant, Salesforce has introduced several AI and Agentforce capabilities across Service Cloud. Highlighted features include: What’s Coming in the Summer ’25 Release? One of the most anticipated features in June 2025 is Agentforce: Service Actions in Slack. Salesforce already enables case swarming in Slack, allowing agents to collaborate with external teams. Now, this guidance will be automatically recorded in the case summary and converted into knowledge articles for future reference. Other upcoming knowledge management features include: Custom AI with Agentforce Beyond prebuilt AI solutions, Agentforce enables brands to create AI-powered workflows tailored to their needs. Service teams can: By integrating Agentforce with Data Cloud, businesses can connect cross-platform workflows and automate enterprise-wide operations. Content updated March 2025. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More

Reward-Guided Speculative Decoding

Salesforce AI Research Unveils Reward-Guided Speculative Decoding (RSD): A Breakthrough in Large Language Model (LLM) Inference Efficiency Addressing the Computational Challenges of LLMs The rapid scaling of large language models (LLMs) has led to remarkable advancements in natural language understanding and reasoning. However, inference—the process of generating responses one token at a time—remains a major computational bottleneck. As LLMs grow in size and complexity, latency and energy consumption increase, posing challenges for real-world applications that demand cost efficiency, speed, and scalability. Traditional decoding methods, such as greedy and beam search, require repeated evaluations of large models, leading to significant computational overhead. Even parallel decoding techniques struggle to balance efficiency with output quality. These challenges have driven research into hybrid approaches that combine lightweight models with more powerful ones, optimizing speed without sacrificing performance. Introducing Reward-Guided Speculative Decoding (RSD) Salesforce AI Research introduces Reward-Guided Speculative Decoding (RSD), a novel framework designed to enhance LLM inference efficiency. RSD employs a dual-model strategy: Unlike traditional speculative decoding, which enforces strict token matching between draft and target models, RSD introduces a controlled bias that prioritizes high-reward outputs—tokens deemed more accurate or contextually relevant. This strategic bias significantly reduces unnecessary computations. RSD’s mathematically derived threshold mechanism dictates when the target model should intervene. By dynamically blending outputs from both models based on a reward function, RSD accelerates inference while maintaining or even enhancing response quality. This innovation addresses the inefficiencies inherent in sequential token generation for LLMs. Technical Insights and Benefits of RSD RSD integrates two models in a sequential, cooperative manner: This mechanism is guided by a binary step weighting function, ensuring that only high-quality tokens bypass the target model, significantly reducing computational demands. Key Benefits: The theoretical foundation of RSD, including the probabilistic mixture distribution and adaptive acceptance criteria, provides a robust framework for real-world deployment across diverse reasoning tasks. Empirical Results: Superior Performance Across Benchmarks Experiments on challenging datasets—such as GSM8K, MATH500, OlympiadBench, and GPQA—demonstrate RSD’s effectiveness. Notably, on the MATH500 benchmark, RSD achieved 88.0% accuracy using a 72B target model and a 7B PRM, outperforming the target model’s standalone accuracy of 85.6% while reducing FLOPs by nearly 4.4×. These results highlight RSD’s potential to surpass traditional methods, including speculative decoding (SD), beam search, and Best-of-N strategies, in both speed and accuracy. A Paradigm Shift in LLM Inference Reward-Guided Speculative Decoding (RSD) represents a significant advancement in LLM inference. By intelligently combining a draft model with a powerful target model and incorporating a reward-based acceptance criterion, RSD effectively mitigates computational costs without compromising quality. This biased acceleration approach strategically bypasses expensive computations for high-reward outputs, ensuring an efficient and scalable inference process. With empirical results showcasing up to 4.4× faster performance and superior accuracy, RSD sets a new benchmark for hybrid decoding frameworks, paving the way for broader adoption in real-time AI applications. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Native Salesforce App to Simplify Event Management

Native Salesforce App to Simplify Event Management

Why a Native Salesforce App Changes Everything Streamlined Event Operations Blackthorn.io’s platform eliminates the need for external integrations by operating entirely within Salesforce. This means event data—registrations, payments, and attendee interactions—is instantly accessible and linked to existing CRM records in real-time. Case in Point: USC Marshall School of Business Facing inefficiencies in manual data entry and registration processes, USC Marshall School adopted Blackthorn.io’s solution. They leveraged branded event pages, automated attendee check-ins, and simplified scaling for admissions events. The Salesforce-native architecture streamlined data analysis, ensuring a single source of truth and improving follow-ups with prospective students. Harnessing Salesforce Data for Personalization Blackthorn.io’s platform empowers organizations to personalize event experiences using CRM data. For example: Traditional event tech systems only pull basic fields into Salesforce. In contrast, Blackthorn.io leverages all standard and custom Salesforce fields, enabling planners to design deeply personalized event experiences. Addressing Integration Challenges Event planners often face inefficiencies caused by integrating third-party platforms with Salesforce, such as data flow disruptions, duplicate management, and delays. Blackthorn.io removes these obstacles by unifying event data with CRM data. This seamless approach enables real-time management of everything from registration to post-event follow-ups, cutting hours of manual work. 🔔🔔  Follow us on LinkedIn  🔔🔔 Applications Across Industries Corporate Events Higher Education Healthcare Nonprofits Associations AI and Automation: Redefining Event Planning Leverage Salesforce AI Blackthorn.io taps into Salesforce’s AI capabilities to deliver advanced insights, such as correlating event attendance with conversion likelihood. This reduces planning time and enhances decision-making. AgentForce AI AgentForce from SalesforceLaunching in 2025, Blackthorn.io’s upcoming AgentForce-based AI will analyze multiple data sources for insights beyond traditional reporting. It will answer questions like, “Which events are most effective for donor acquisition?” Scaling with Personalization Key Features Clients Love The Blackthorn Advantage By operating natively within Salesforce, Blackthorn.io simplifies event management while empowering organizations to deliver personalized, data-driven experiences. Its unified approach to event data eliminates inefficiencies, scales effortlessly, and opens up new opportunities for meaningful engagement across industries. Ready to transform your event management? Discover the power of Blackthorn.io with Tectonic and start planning smarter today. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
AI Agent Rivalry

Generative AI in CX

Generative AI in CX: Opportunities and Challenges Generative AI offers the promise of transformative efficiency and innovation in customer experience (CX). However, businesses face significant hurdles in adopting the technology, including budget constraints, compliance challenges, and internal alignment issues. A Growing Gap Between Innovation and AdoptionCX technology vendors often outpace their customers in releasing advanced features. With generative AI, this gap feels wider than ever. For example, Zendesk’s CX Trends 2025 report revealed that over 25% of surveyed businesses have delayed AI adoption due to budgetary, knowledge, or organizational support barriers. Similarly, an October survey by NTT Data found that more than half of senior IT decision-makers had yet to align generative AI strategies with business goals. While only 39% of respondents reported significant investments in generative AI, most companies remain in early phases, such as pilots and trials. Some businesses, however, have no plans to invest at all. Early Adoption in CXDespite these challenges, early adopters are exploring generative AI applications in customer service and contact centers. AI-powered bots, or “agents,” are proving effective in summarizing answers and improving efficiency. However, deploying these agents requires substantial preparation, such as organizing customer data and defining roles and processes—a significant task for many IT teams. John Seeds, CMO at TTEC Digital, emphasized the importance of using generative AI internally first:“We start by addressing inconsistencies and cleaning up data. Once that’s done, businesses can present it effectively to reduce inbound calls and enhance self-service in contact centers.” Expanding Beyond Customer ServiceGenerative AI is also being embraced by marketing and e-commerce teams. Platforms like Salesforce, Google, and Sitecore have introduced tools that assist with campaign ideation and content creation. While these tools don’t always produce polished outputs, they serve as powerful starting points for creatives. The Generative AI RevolutionAI has been a staple in CX for years, powering analytics, natural language processing, and automation. But the release of OpenAI’s ChatGPT in late 2022 revolutionized the field. John Ball, SVP at ServiceNow, noted:“Generative AI has removed the need for handcrafting every dialogue or intent model. It opens up possibilities for chat and email recommendations without requiring as much manual setup.” Similarly, Salesforce AI executives, including Silvio Savarese, highlighted the technology’s unprecedented adoption:“It was incredible to see how quickly generative AI captured global attention,” Savarese said. Questions of Autonomy and TrustThe rise of AI agents introduces questions about trust and autonomy. Can bots make decisions that keep customers happy? What happens if they make mistakes? As companies explore these possibilities, many are focusing on augmenting human workflows rather than replacing them entirely. For example, Trimedx plans to use ServiceNow’s generative AI to automate report generation for its clinical hardware in hospitals. This application aims to save time while supporting human decision-making. Similarly, Siemens has deployed its own AI “bionic agent” to handle tasks like supply chain management, with generative AI accelerating customization and productivity. Regulatory and Ethical ConsiderationsAs adoption grows, so do concerns around compliance and copyright. The Biden administration’s recent CX-related regulations, including a ban on junk fees, could influence how AI is integrated into business processes. Additionally, initiatives like Adobe’s Content Authenticity Initiative aim to ensure transparency in AI-generated content by providing tools to verify the origins and editing history of digital assets. The Road AheadGenerative AI holds immense potential to transform CX by improving efficiency, reducing costs, and driving innovation. However, businesses must address challenges in data readiness, compliance, and ethical usage to fully realize its benefits. While early adopters are making strides, widespread success will depend on thoughtful implementation and alignment with organizational goals. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Unlocking the Future of AI with Phidata

Data Masking Explained

What is Data Masking? Data masking is a crucial data security technique that replaces sensitive information with realistic yet fictitious values, ensuring the original data remains protected from unauthorized access. This method secures sensitive data—such as personally identifiable information (PII), financial records, or proprietary business data—while still allowing it to be used for testing, development, or analytics. An effective data masking solution should include these core features: Data masking plays a vital role in data governance, helping organizations control access to sensitive information while balancing security and usability. Why Does Data Masking Matter for AI and Agent Testing? As artificial intelligence continues to drive business transformation, it relies heavily on data to train models, generate insights, and automate workflows. However, using real customer and enterprise data in AI development poses significant privacy risks. Data masking mitigates these risks by enabling AI systems to train on realistic yet anonymized datasets, keeping sensitive production data secure. Protecting Sensitive Data Testing AI-powered Salesforce applications often requires realistic datasets, including PII, financial information, and confidential business records. Using unmasked data in non-production environments increases exposure risks, such as insider threats, misconfigurations, or accidental leaks. By replacing sensitive data with masked equivalents, organizations can maintain privacy while enabling effective development and testing. Ensuring Compliance with Data Protection Regulations Regulatory frameworks like GDPR, CCPA, and HIPAA impose strict requirements for handling sensitive data—even in testing environments. GDPR, for example, mandates pseudonymization or anonymization to protect privacy. Failure to implement proper data masking strategies can result in severe fines and reputational damage. Masking ensures compliance while maintaining a secure foundation for Salesforce testing. Enhancing Test Accuracy AI-driven Salesforce applications require realistic testing scenarios to ensure functionality and accuracy. Masked data preserves the structure and variability of original CRM datasets, allowing developers to simulate real-world interactions without exposing sensitive information. This approach improves test precision and accelerates the deployment of high-quality applications. Reducing Bias and Promoting Fairness Data masking also supports fairness in AI models by removing personally identifiable details that could unintentionally introduce bias. Anonymizing sensitive attributes helps organizations build ethical, unbiased AI systems that support diverse and equitable outcomes. Key Considerations for Implementing Data Masking To effectively implement data masking in Salesforce environments, organizations should consider the following: Define Scope and Objectives Before masking data, determine what needs protection—whether it’s customer records, financial transactions, or proprietary insights. Align masking strategies with business goals, such as development, testing, or compliance, to ensure maximum effectiveness. Select the Right Masking Techniques Different masking methods serve distinct purposes: By integrating data masking into privacy-first strategies, organizations not only ensure compliance but also foster secure innovation and long-term digital trust. A Privacy-First Approach to AI Development As privacy becomes a defining factor in AI and trust-driven application development, data masking is an essential safeguard for security, compliance, and ethical innovation. For organizations leveraging Salesforce AI solutions like Agentforce, masking enables the safe use of realistic but anonymized datasets, ensuring privacy while accelerating AI-driven transformation. Start with Salesforce’s built-in data masking tools to secure sensitive information and empower secure, compliant, and forward-thinking AI development. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
Salesforce AI Research Introduces BLIP-3-Video

Salesforce AI Research Introduces BLIP-3-Video

Salesforce AI Research Introduces BLIP-3-Video: A Groundbreaking Multimodal Model for Efficient Video Understanding Vision-language models (VLMs) are transforming artificial intelligence by merging visual and textual data, enabling advancements in video analysis, human-computer interaction, and multimedia applications. These tools empower systems to generate captions, answer questions, and support decision-making, driving innovation in industries like entertainment, healthcare, and autonomous systems. However, the exponential growth in video-based tasks has created a demand for more efficient processing solutions that can manage the vast amounts of visual and temporal data inherent in videos. The Challenge of Scaling Video Understanding Existing video-processing models face significant inefficiencies. Many rely on processing each frame individually, creating thousands of visual tokens that demand extensive computational resources. This approach struggles with long or complex videos, where balancing computational efficiency and accurate temporal understanding becomes crucial. Attempts to address this issue, such as pooling techniques used by models like Video-ChatGPT and LLaVA-OneVision, have only partially succeeded, as they still produce thousands of tokens. Introducing BLIP-3-Video: A Breakthrough in Token Efficiency To tackle these challenges, Salesforce AI Research has developed BLIP-3-Video, a cutting-edge vision-language model optimized for video processing. The key innovation lies in its temporal encoder, which reduces visual tokens to just 16–32 tokens per video, significantly lowering computational requirements while maintaining strong performance. The temporal encoder employs a spatio-temporal attentional pooling mechanism, selectively extracting the most informative data from video frames. By consolidating spatial and temporal information into compact video-level tokens, BLIP-3-Video streamlines video processing without sacrificing accuracy. Efficient Architecture for Scalable Video Tasks BLIP-3-Video’s architecture integrates: This design ensures that the model efficiently captures essential temporal information while minimizing redundant data. Performance Highlights BLIP-3-Video demonstrates remarkable efficiency, achieving accuracy comparable to state-of-the-art models like Tarsier-34B while using a fraction of the tokens: For context, Tarsier-34B requires 4608 tokens for eight video frames, whereas BLIP-3-Video achieves similar results with only 32 tokens. On multiple-choice tasks, the model excelled: These results highlight BLIP-3-Video as one of the most token-efficient models in video understanding, offering top-tier performance while dramatically reducing computational costs. Advancing AI for Real-World Video Applications BLIP-3-Video addresses the critical challenge of token inefficiency, proving that complex video data can be processed effectively with far fewer resources. Developed by Salesforce AI Research, the model paves the way for scalable, real-time video processing across industries, including healthcare, autonomous systems, and entertainment. By combining efficiency with high performance, BLIP-3-Video sets a new standard for vision-language models, driving the practical application of AI in video-based systems. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
New Service Cloud Tools

Service Cloud for HR

Salesforce has expanded its Service Cloud capabilities to include a new HR-focused solution, Employee Service, designed to streamline employee support and enhance productivity. Employee Service introduces a dedicated HR service console paired with an employee portal. This portal acts as a centralized hub for staff to access HR resources, offering instant answers via Generative AI (GenAI), direct communication with HR specialists across multiple channels, and self-service options for tasks like requesting paid time off (PTO). For HR teams, the service console consolidates employee data, case details, and a company’s knowledge base into a unified workspace. It leverages AI-driven tools to resolve cases faster, automate routine tasks, and deliver seamless employee experiences. Salesforce’s Agentforce customers can integrate AI agents into Employee Service to further automate processes, saving time and reducing repetitive workloads. In a LinkedIn announcement, Kishan Chetan, EVP and GM for Service Cloud, highlighted the solution’s potential: “This new solution unifies employee data, case details, and a company’s corporate knowledge base all in one workspace that gives HR teams a 360-degree view of each employee and the ability to manage employee support cases with built-in AI and productivity tools. HR teams can efficiently resolve employee issues using Agentforce to quickly search, respond, summarize, and close cases, extending teams to get work done faster.” Salesforce’s broader goal is to eliminate the reliance on fragmented HR tools and reduce the need for employees to navigate disparate platforms like email, internal systems, and collaboration tools to complete HR-related tasks. By doing so, Salesforce aims to simplify HR processes, minimize manual effort, and enhance overall productivity. Early adopters of Employee Service are already reporting significant results. According to Sherin Sunny, Sr. Director of Product Management at Salesforce, customers have observed a 31% increase in employee productivity. This aligns with broader trends: Recognizing the need for a unified HR ecosystem, Salesforce includes a prebuilt MuleSoft integration with Workday and configurable connectors to other Human Capital Management (HCM) systems. These integrations establish a centralized HR data foundation, reducing inefficiencies caused by siloed tools. Looking ahead, Beth Schultz, VP of Research & Principal Analyst at Metrigy, emphasized the importance of integrating Employee Service with Slack, Salesforce’s collaboration platform: “We’ll be particularly watching how Salesforce’s multifaceted plans for bringing [Employee Service] into Slack play out as Slack evolves into a fully connected, collaborative workspace.” Slack itself is undergoing a transformation, with Salesforce Co-Founder Patrick Harris returning to revamp the platform as a core part of the Salesforce ecosystem. Meanwhile, Salesforce continues to expand Service Cloud’s offerings beyond Employee Service. Recent developments include a revamped CCaaS (Contact Center as a Service) integration program and a new product discovery tool. Still, Agentforce remains a key focus for Salesforce’s marketing efforts, showcasing its potential to redefine how businesses deploy autonomous AI agents across use cases like HR and beyond. Like Related Posts Salesforce OEM AppExchange Expanding its reach beyond CRM, Salesforce.com has launched a new service called AppExchange OEM Edition, aimed at non-CRM service providers. Read more The Salesforce Story In Marc Benioff’s own words How did salesforce.com grow from a start up in a rented apartment into the world’s Read more Salesforce Jigsaw Salesforce.com, a prominent figure in cloud computing, has finalized a deal to acquire Jigsaw, a wiki-style business contact database, for Read more Service Cloud with AI-Driven Intelligence Salesforce Enhances Service Cloud with AI-Driven Intelligence Engine Data science and analytics are rapidly becoming standard features in enterprise applications, Read more

Read More
gettectonic.com